On-line Diabetes Self-Management Program, A Randomized Study

Kate Lorig, RN, DrPH(1); Philip L. Ritter, PhD(1); Diana D. Laurent, MPH(1); Kathryn Plant, MPH(1); Maurice Green, PhD(1); Valarie Blue Bird Jernigan, PhD(2); Siobhan Case, BA (3)

1. Stanford University School of Medicine, Palo Alto, CA
2. Stanford University - Stanford Prevention Research Center, Palo Alto, CA.
3. Yale School of Medicine, New Haven, CT

Corresponding author:
Philip L. Ritter
Email: philr@stanford.edu

Submitted 20 November 2009 and accepted 5 March 2010.

Clinical trial reg. no. NCT00185601; www.clinicaltrials.gov

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective. We hypothesized that people with type 2 diabetes in an on-line diabetes self-management program, compared to usual-care controls, would demonstrate 1) reduced A1c at 6 and 18 months, 2) have fewer symptoms, 3) increased exercise and 4) improved self-efficacy and patient activation. In addition, participants randomized to listservreinforcement would have better 18-month outcomes than participants receiving no reinforcement.

Research Design and Methods. 761 participants were randomized to 1) the program, 2) program with email reinforcement, or 3) usual-care controls (no treatment). This sample included 110 American Indians/Alaska Natives (AI/AN). Analyses of covariance models were used at 6 and 18-month follow-up to compare groups.

Results. At six months A1c, patient activation and self efficacy were improved for program participants compared to usual care controls (p<.05). There were no changes in other health or behavioral indicators. The AI/AN program participants demonstrated improvements in health distress and activity limitation compared to usual-care controls. The subgroup with initial A1c above 7 demonstrated stronger improvement in A1c (p=.01). At 18 months, self-efficacy and patient activation were improved for program participants. A1c was not measured. Reinforcement showed no improvement.

Conclusions. An on-line diabetes self-management program is acceptable for people with type 2 diabetes. Although the results were mixed they suggest 1) that the program may have beneficial effects in reducing A1c, 2) AI/AN populations can be engaged in and benefit from on-line interventions, and 3) our follow-up reinforcement appeared to have no value.
Type-2 diabetes affects 9.6% of the adult population, and its prevalence is increasing.[1] While the need for self-management support is well documented, most diabetes education studies have taken place in clinical settings and targeted those who have a high hemoglobin A1c (usually 7 or above). Recent community-level, peer-led, small-group diabetes self-management programs have shown promise.[2,3] However, not all patients with type-2 diabetes are willing or able to participate in small-group programs, nor are such programs likely to be available in all locations.

There are few studies of community-based diabetes education programs for American Indians/Alaskan Natives (AI/AN). We report on a randomized, controlled trial of an Internet-based Diabetes Self-Management Program (IDSMP) including AI/ANs. This was the first study, to our knowledge, examining such a program among AI/ANs.

The Cochrane Collaboration reviewed group-based training for type2 diabetes.[4] They found 11 studies that met their criteria. Eight of these were randomized studies and 3 were controlled studies. All of the interventions were taught by health professionals. One study took place in a community setting, and one reported a mean baseline A1c below 7.

Jackson and colleagues conducted a systematic review of computer-assisted technologies in diabetes prior to 2004.[5] They found four articles involving patient education. In an early study, [6] groups were randomized to basic diabetes information, tailored on-line coaching or peer support. Improvement in health behaviors and psychological outcome were found in all three groups, with no differences between groups. Glasgow and colleagues showed that a computer-assisted intervention was practicable and acceptable in a real world setting and resulted in improvements in recommended services.[7] In a low-intensity computer program study, short-term outcomes were promising but not significant.[8] Wengberg, utilizing an computer diabetes intervention, has suggested that self-efficacy may function as a moderator for diabetes behavior change.[9] and Gerber et al have demonstrated usability of an internet program for young inner city adults.[10] In summary, Internet-based educational programs have been demonstrated to change behaviors and sometimes health status. We were unable to find computer-based studies demonstrating changes in A1c.

RESEARCH DESIGN AND METHODS

We report on 1) a randomized 6-month trial of the Internet-based Diabetes Self-Management Program (IDSMP), with an 18-month follow-up. We hypothesized that participants in the IDSMP, compared to usual-care controls, would demonstrate 1) reduced A1c at 6 months and 18 months, 2) fewer symptoms, 3) increased exercise and 4) improved self-efficacy and patient activation. We also hypothesized that participants randomized to a follow-up listserv, peer-support group would have better 18-month outcomes than participants receiving no follow-up.

The Internet-Based Diabetes Self-Management Program (IDSMP) - The asynchronous, six-week, Internet-Based Diabetes Self-Management Program (IDSMP) is based on English and Spanish-language peer-led small-group diabetes self-management programs (DSMP, SDSMP).[2,3] The IDSMP consists of six weekly sessions. Participants logged on individually to the sessions, which were available for the entire week. The topics covered are shown in Online Appendix Table A1 which is available at http://care.diabetesjournals.org.

A password-protected *Homepage* provides access to the weekly activities which include:
The Learning Center where the program content is offered in 20 to 30 new web pages weekly. Each week, participants are asked to reply to a question such as “What problems do you have because of your diabetes?” and to make a specific action plan. The questions and action plans are posted on bulletin boards in the Discussion Center where they can be seen by all participants.

Discussion Center is made up of four interactive threaded bulletin boards (Action Planning, Problem Solving, Difficult Emotions and Celebrations) populated by responses made in the Learning Center, as well as new threads started by participants whenever they wish. A typical program of 20-25 participants results in 500 or more posts.

My Tools consists of exercise and medication logs, audio relaxation exercises, meal planning and glucose monitoring tools and links to other diabetes-related websites.

Post Office, where participants and facilitators can write private, individual messages to each other.

Help is a section where participants can email the moderators or program administrators. The latter are also available via a toll-free telephone line.

In addition to the web program, each participant received a copy of the book, Living a Healthy Life with Chronic Conditions. [11] Specific sections of this book are referenced in the Learning Center. The book is used as a reference, not as a text. Thus the program consists of the on-line interactive training plus the book.

Facilitators - Two peers facilitate each program. Facilitators were previously trained as Self-Management small-group leaders and had taken the IDSMP (as non-study subjects). Facilitators assist participants by reminding them to log on, modeling action planning and problem-solving, offering encouragement, and posting to the bulletin boards. They also monitor the daily posts for safety and report inappropriate posts to the investigators. All facilitation takes place on-line, mainly via posts within the program pages. Each participant receives personalized responses from facilitators during each weekly session. Unlike the small-group program, facilitators do not deliver content, as this is scripted in the learning center. Programs were facilitated by 16 different people, half with diabetes. Each program had at least one facilitator with diabetes.

The study was approved by the Stanford School of Medicine Institutional Review Board.

Participants and Data Collection - Participants were 18 or over, not pregnant or in care for cancer, had physician-verified type 2 diabetes, and access to the Internet. Recruitment was largely via the Internet, although print and broadcast media were also utilized. Special effort was made to recruit American Indian/Alaska Native (AI/AN) participants using websites and media associated with tribal and AI/AN organizations. This was accomplished utilizing the expertise of an AI/AN researcher.[12]

All consents and questionnaires were administered on-line. Participants contacted the study by going to the website, where they were screened for eligibility and were asked to complete consent and baseline questionnaires. A1c was obtained using mailed self-administered BIOSAFE kits.[13]

After returning A1c kits, participants were randomized using a random numbers table. Roughly two-thirds became treatment subjects and one-third continued with usual care (no program or other treatment offered). Treatment subjects were further randomized 1:1 to receive follow-up reinforcement (membership in a list-serve discussion group) or no reinforcement. Usual care consisted of whatever care participants had been previously receiving and ranged from community clinics to specialist care. Usual-care participants were not restricted from seeking additional care or programs. All
participants received a $10 Amazon.com certificate after completing each questionnaire and returning their A1c sample.

Randomized Study - The randomized IDSMP group was compared to the usual-care control group at 6 months. If the reinforcement study (below) had shown that reinforcement participants had greater improvements than unreinforced IDSMP participants, the two IDSMP groups would be compared to control participants separately. If there were few differences, the two randomized IDSMP groups would be combined and compared to the usual-care control group. After 6 months, usual-care participants recruited as part of the AI/AN subgroup were offered the program. All other usual-care participants continued as controls through the 18 months of the study. Follow-up data collected at 18 months allowed comparison of IDSMP participants to usual-care subjects, excluding the AI/AN subset.

Reinforcement Study - The reinforcement study compared IDSMP treatment participants who had no reinforcement to those who had been randomized to a listserve discussion group. The discussion group was intended to reinforce any benefits of the program by providing peer-support. Comparisons were made at 6 months and at 18 months. The AI/AN participants were included in the 18-month reinforcement study.

American Indian/Alaska Native Study - American Native/Alaska Native (AI/AN) participants were randomized with other participants but entered the randomized study for only 6 months, after which time AI/AN usual-care participants were offered an opportunity to take the IDSMP. The lack of adequate “usual” medical care and chronic health disparities among the AI/AN subset, as well as the longstanding mistrust of research in many AI/AN communities, were reasons the AI/AN subset was randomized using the wait-list control design. A pilot study of 27 AI/AN and 27 non-AI/AN participants with diabetes had confirmed the feasibility of the online programs for this population.[14]

Measures - Health status, health behaviors, health care utilization, patient activation and self-efficacy were measured at each time point. The specific measures were based on diabetes-related problems identified in participant focus groups and on self-efficacy theory.[15] The primary outcome measure was A1c, measured using capillary blood obtained with self-administered BIOSAFE kits. These have an expected non-diabetic range of 3.8-5.9 compared to 4-6 for NGSP (National Glycohemoglobin Standardization Program) standards.[16] A paired duplicate specimen comparison with the whole-blood method at Stanford Hospital Laboratories showed excellent correlation and precision. These assays have independently been shown to be reliable and valid.[16] The A1c measure was not available for the 18-month comparisons because BIOSAFE ceased operation early in the 18-month data collection. Health-related distress was measured by the health distress scale adapted from the Medical Outcome Study.[17] The activity limitations scale, which measures the impact of disease on role activities such as recreation and chores, was developed for an earlier study.[18]. Depression was measured by the PHQ-9.[19] A physical activities scale measured total minutes per week of aerobic exercise.[18]

Tercery measures included the 13-item short-form Patient Activation Measure (PAM) and diabetes self-efficacy. PAM measures patient self-reported knowledge, skill, and confidence for managing their chronic condition.[20] The diabetes self-efficacy scale was developed for a small group diabetes program[2] and based on earlier chronic disease self-efficacy scales.[18] Health care utilization over the prior 6 months was measured by self-report. In a study comparing the validity of self-reported with
chart audit.[21] there were no biases toward improved reporting over time. Details of the psychometric properties for most of the measures can be found at http://patienteducation.stanford.edu/research.

Data Analysis: Baseline randomization - T-tests were used to compare baseline IDSMP participants with usual-care participants and to compare baseline reinforced to unreinforced IDSMP participants. We included all variables demonstrating significant differences at baseline as covariates in subsequent multivariate analyses at 6-month and 18-months.

Non-completers - To test the potential effect of dropouts, we compared the baseline variables for those who failed to complete the 6-month questionnaires with those who had completed questionnaires, utilizing t-tests. Control versus treatment non-completers were then compared.

Reinforcement - ANCOVA models were used to compare reinforced with unreinforced program participants. Six and 18-month outcomes were the dependent variables with demographic variables and the outcome variable at baseline included as covariates. Least-square means (computed as part of the ANCOVA procedure and adjusted for covariates) were used to determine if there were significant differences between the treatment groups randomized to reinforcement and no reinforcement.

6-month outcomes - Analyses of covariance (ANCOVA) models compared program and control participants at 6 months. As reinforcement proved to have no effect on the outcomes (see results below), reinforced and unreinforced participants were combined to create one treatment group, which was then compared to the control participants. Separate comparisons of the controls, reinforced and unreinforced program participants are also presented. All subjects, irrespective of the number of weeks they participated in the intervention, were included in the analyses.

Least-square means (adjusted for covariates) were used to determine if there were significant differences between the program participants and the randomized usual-care control group after controlling for baseline outcome values and demographic covariates. ANCOVA models were repeated adding interaction terms of all baseline outcome variables with randomization. This was to ascertain if existing conditions might moderate the effectiveness of the program and help determine the characteristics of participants most likely to benefit.

Analyses were done using both actual data collected and intent-to-treat methodology—based on substituting last acquired data for missing data. In the case of six-month outcomes, this results in the assumption of no change from baseline. P values are interpreted within each category of outcome (A1c, three health indicators, one health behavior, self-efficacy, patient activation, and utilization).

18-month outcomes - Randomized program participants were compared to the usual-care control group at 18 months, using the methodology (ANCOVA) discussed above.

Subgroup analyses - Six-month analyses (ANCOVA models) comparing randomized treatment participants and usual-care controls were then done for two subsets of the original study sample: AI/AN’s and participants with baseline A1c of 7 or greater

RESULTS

Participation: Approximately 36% of participants found the website through links on the internet or search engines. Another 21% learned of the study via email or email newsletters, 9% were referred by relatives, friends or coworkers, 17% through print media, and 10% were referred by health professionals. The AI/AN subset discovered the study through the web (29%, including 5% who found out about the study via tribal websites) and email (20%). Larger numbers were referred by relatives or acquaintances
1463 people visited the website and left contact information (Online Appendix Figure A1). Of these, 1019 completed enrollment screening and proceeded to the baseline questionnaire. A further 48 were disqualified, 22 subsequently declined, 74 failed to complete consent or baseline questionnaires, and 104 failed to complete A1c testing. The remaining 761 participants completed baseline assessments and were randomized to one of three groups: usual-care control (270), the on-line program (259), or the on-line program plus list-serve email reinforcement (232). Subsequently, 27 withdrew or dropped and 2 died before completing the 6-month questionnaire. Thus, 732 continued in the study for 6 months. Of those continuing, 645 (85%) completed the 6-month questionnaire. These included 238 controls and 395 participants in the online program (109 unreinforced treatments and 186 reinforced treatments).

Between August 2006 and September 2007, 21 programs were held with a mean of 23 participants per program.

The AI/AN recruitment resulted in a sample that included 110 AI/AN participants. (See Online Appendix figure A2). After 6 months, AI/AN controls were allowed to enroll in the program and thus were no longer part of the randomized study. Of the 651 remaining (non-AI/AN) study participants, 528 (81%) completed 18-month questionnaires.

Baseline: Study participants were predominantly non-Hispanic white (76%), female (73%), married (66%), and well educated (mean of 15.7 years of education). The average age was 54.3. The only statistical difference between the randomized treatment and control groups was percentage married (78 versus 71 percent, p=.034, Online Appendix Table A2). Percentage married, as well as other demographic variables, were included as covariates in subsequent analyses of covariance. The controls had slight higher PHQ depression levels at baseline (Table A3). The mean baseline A1c level at baseline was 6.44, relatively low for a population with diabetes.

The AI/AN subset represented approximately 70 tribal groups. They were slightly younger than the non-AI/AN participants (mean age 51 versus 55, p<.001), and less likely to be married (57% versus 68%, p=.035. Demographics for AI/ANs by randomization are given in Appendix Table A2). The AI/AN subset also had higher baseline mean A1c (6.9 versus 6.4, p<.001). None of the other outcome variables differed significantly from non-AI/AN at baseline.

Program Usage: Case conducted a study of the IDSMP utilization by 45 participants (15 each African American, Non-Hispanic white and AI/AN).[22] The median number of days for writing messages for all races was 32 (30 for African Americans, 37 for Non-Hispanic whites, and 28 for AI/AN), with 80% of participants writing messages over a period of at least 21 days or half the length of the workshop. The median number of messages per participant was 17, and the mean was 25. There were few differences among the racial groups although AI/AN logged for a shorter time period than Non-Hispanic whites. There were few differences in the content of the posts.

Six-Month Non-Completers: There were few significant differences at baseline between those who completed 6-month questionnaires and those who did not. Non-completers were younger, less likely to be married and less likely to be non-Hispanic white. They had higher mean baseline hemoglobin A1c and higher levels of health distress. However there were no significant differences between the participant non-completers and the usual-care control non-completers (see Online Appendix table A4).
Six-Month Randomized Outcomes: Table 1 provides information regarding the changes in outcome variables for the control and treatment participants. Because reinforcement was not associated with any improvements (see below under “reinforcement study”), the two treatment groups were combined for the six-month comparison to usual-care control subjects, as well as kept separate. Treatment participants, when compared to usual-care controls, had significantly lower A1c (p<.05) as well as improvements in patient activation (PAM) and self-efficacy (.021 and <.001, respectively). Health behavior and utilization changes were not significantly different for treatment compared to control group participants.

When intent-to-treat analyses were used, PAM and self-efficacy remained significant while the p value for A1c increased to .060. When ANCOVAs were rerun with baseline-randomization interaction terms included in the models, the interaction of A1c with randomization was significant in predicting six-month A1c (p <.001). AI/AN versus non-AI/AN interactions with randomization were significant in predicting six-month Health Distress, Activity Limitation and Physician Visits. These two initial conditions were then examined in more detail below. Baseline self-efficacy also had significant interactions with randomization and appears to be a moderating variable suggesting that lower baseline self-efficacy was associated with better outcomes. This will be examined elsewhere.

Eighteen-Month Randomized Outcomes: The comparison of 18-month completers to non-completers showed few differences: the non-completers were younger, had higher A1c and higher health distress at baseline (Table A8). There were no significant differences between the participant and usual-care control non-completers.

We could not include A1c analyses at 18 months because of the closure of the laboratory. Results from a second laboratory could not be adequately correlated with the original lab. Of the remaining outcome variables, two had significantly greater improvements for program participants as compared to the usual-care participants: self-efficacy to manage diabetes and PAM patient activation (p=.016, .007 respectively; Online Appendix Table A6). Other 18-month change scores differences were not significant. Intent-to-treat methodology resulted in the p-value for PAM increasing to .052.

Reinforcement Study: Online Append Figure A3 gives information about the participants in the reinforcement study. At 6 months, there was only one significant difference between reinforced (N=186) and unreinforced (N=209) participants. The unreinforced participants had greater improvement in health distress (p=.007, Online Appendix Table A7). At 18 months, there again was one variable that was significantly different. The unreinforced participants had a greater reduction in depression (p=.033, see Online Appendix Table A8). Intent-to-treat methodology did not change the results.

High A1c Subgroup: When only participants with baseline A1c of 7.0 or greater are included at 6 months (Online Appendix, Table A9), the difference between treatment and control for A1c was .614 (p =.010, effect size .499). Self-efficacy was also statistically significant (p=.040), although the effect size was small.

American Indian/Alaska Native Subgroup: At 6 months, the AI/AN subsample was underpowered (N=73). Despite the low number of cases, there were significant decreases in health distress and activity limitation for AI/AN program participants compared to controls (Table 2). While not statistically significant, the A1c change score difference between the two groups was nearly
The treatment group had a statistically significant increase in physician visits. Using intent-to-treat methodology, activity limitation remained significant, while health distress and physician visits became marginal. Tables A10 and A11 in the Online Appendix present the six-month data for AI/AN and non AI/AN separately.

CONCLUSIONS
At 6 months, results were mixed. The changes in the primary outcome variable (A1c) had a small (effect size =.111) but statistically significant difference between treatment and usual-care control groups when only looking at actual cases (p=.039). The two tertiary outcomes, patient activation and self-efficacy, both improved for treatment participants compared to usual-care controls. However secondary outcomes did not improve. None of the three health indicators showed significant differences, nor were the amount of exercise or number of physician visits significantly changed. At 18 months, PAM Patient Activation and self-efficacy were significantly increased for program participants, although PAM became marginal when intent-to-treat methodology was used. Other outcomes variables were not significant at 18 months. Randomization to listserve email peer-support reinforcement did not improve the outcomes for program participants, either at 6 or 18 months. Surprisingly the attempt at reinforcement was not effective. We encountered a similar finding in another study, using a different reinforcement technique (automated follow-up phone calls).[3] Further study, including more attention to how the listserve was utilized, would be required to determine if only our particular attempts at reinforcement were unsuccessful or if follow-up in general is not called for with similar self-management programs. In addition, further study of program fidelity and how program participants utilized the program, including any possible “dose effect” would be desirable.

The lack of a detailed analysis of effects of program utilization, as well as analyses of possible mediating effects of secondary and tertiary variable is an important limitation but was beyond the scope of this study.

A further limitation of the study was the relatively low mean A1c at baseline. A large portion of the participants were “in control” and more likely to get worse rather than better due to both a floor effect and regression to the mean. When we looked at the subgroups of those with baseline A1c above 7.0 at baseline, the differences in improvements in A1c increased from a very modest effect size of .11 for the entire randomized sample to a clinically significant effect size of .50. This suggests the program may prove more successful if targeted to patients with higher A1c.

When we limited ourselves to the AI/AN subset (who had a mean baseline A1c of nearly 7.0 compared to the total sample mean of 6.4), we saw improvements in health indicators (activity limitations and health distress with significant effect sizes of .48 and .34, respectively). Although the difference for A1c was not statistically significant, with a properly powered sample, an effect size difference of .25 would undoubtedly have been statistically significant.

The methods of recruitment and design of the study may have contributed to low differences between treatment and control participants. A high proportion of those who joined the study were actively seeking information about their disease when they found the study website. The control group was not offered the possibility of participation in the program after a short period of time, and may have searched for and found alternate interventions. The AI/AN subgroup was an exception in this regard as they were offered the program after 6 months. This may have contributed to the relative success of the program within that subgroup.
Although results were both encouraging and discouraging, they suggest that the program can be beneficial to people with diabetes and that further study is warranted. A trial with broader recruitment, limited to only those with A1c above 7.0, and allowing randomized control subjects to participate in the program after a 6-month trial would prove more definitive.

ACKNOWLEDGEMENTS

We wish to thank Rose Sage Barone and Tanya Podchiyska for programming, and Angela Devlin for follow-up data collection. The study was supported by NIH grant 1R18DK065729 and Robert Wood Johnson Foundation Grant 096223.

Disclosure: Lorig and Laurent receive royalties for the book used by study participants. Lorig, Laurent and Plant potentially receive licensing fees if the program is disseminated. Ritter, Jernigan and Green have no conflicts of interest.
REFERENCES

Table 1. Six-Month Change Scores, Diabetes On-line, All Participants

<table>
<thead>
<tr>
<th>Outcome Variable</th>
<th>Control (T)</th>
<th>Treatment, no reinforcement (R)</th>
<th>Treatment & reinforcement (R)</th>
<th>Treatment Combined (T plus R)</th>
<th>T vs. Control P ITT</th>
<th>R vs. Control P ITT</th>
<th>R vs. T P ITT</th>
<th>C vs. Treatment (T plus R) P ITT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=238</td>
<td>N=209</td>
<td>N=186</td>
<td>N=395</td>
<td>actual</td>
<td>actual</td>
<td>actual</td>
<td>actual</td>
</tr>
<tr>
<td>A1c ↓</td>
<td>0.126 (0.779)</td>
<td>-0.034 (0.844)</td>
<td>0.018 (0.862)</td>
<td>-0.009 (0.852)</td>
<td>.064 .036</td>
<td>.176 .162</td>
<td>.653 .530</td>
<td>.060 .039</td>
</tr>
<tr>
<td>Health Distress (0-5) ↓</td>
<td>-0.257 (0.844)</td>
<td>-0.348 (1.03)</td>
<td>-0.082 (0.988)</td>
<td>-0.203 (1.02)</td>
<td>.231 .078</td>
<td>.089 .168</td>
<td>.005 .003</td>
<td>.822 .771</td>
</tr>
<tr>
<td>Activity Limitation (0-4) ↓</td>
<td>0.034 (0.848)</td>
<td>-0.019 (0.869)</td>
<td>0.009 (0.982)</td>
<td>-0.006 (0.923)</td>
<td>.217 .200</td>
<td>.453 .425</td>
<td>.655 .664</td>
<td>.243 .219</td>
</tr>
<tr>
<td>PHQ Depression (0-27) ↓</td>
<td>-0.836 (3.82)</td>
<td>-1.072 (4.44)</td>
<td>-0.398 (4.10)</td>
<td>-0.754 (4.26)</td>
<td>.413 .183</td>
<td>.465 .687</td>
<td>.131 .099</td>
<td>.931 .558</td>
</tr>
<tr>
<td>PAM Patient Activation (0-100) ↑</td>
<td>3.63 (14.4)</td>
<td>6.24 (14.5)</td>
<td>5.09 (14.3)</td>
<td>5.70 (14.4)</td>
<td>.083 .035</td>
<td>.230 .069</td>
<td>.631 .827</td>
<td>.085 .021</td>
</tr>
<tr>
<td>Self Efficacy (1-10) ↑</td>
<td>-0.203 (1.70)</td>
<td>0.321 (1.99)</td>
<td>0.160 (1.73)</td>
<td>0.245 (1.87)</td>
<td><.001 <.001</td>
<td>.004 .001</td>
<td>.656 .760</td>
<td><.001 <.001</td>
</tr>
<tr>
<td>Aerobic exercise (min/week) ↑</td>
<td>-1.97 (130)</td>
<td>12.09 (145)</td>
<td>1.41 (167)</td>
<td>7.04 (156)</td>
<td>.496 .238</td>
<td>.799 .306</td>
<td>.687 .905</td>
<td>.579 .194</td>
</tr>
<tr>
<td>Physician Visits (last 6 months)</td>
<td>-0.198 (3.25)</td>
<td>-0.121 (3.53)</td>
<td>-0.239 (3.55)</td>
<td>-0.177 (3.54)</td>
<td>.809 .679</td>
<td>.722 .611</td>
<td>.906 .967</td>
<td>.730 .589</td>
</tr>
</tbody>
</table>

Notes: P Values are from ANCOVA models controlling for baseline outcome variable and demographic variables, and assess the likelihood that there would have been no difference between the treatment and control group. Possible ranges are given in parentheses next to outcome variables, and arrows indicate desirable directions. T=Treatment Program without reinforcement, R=Treatment Program with listserv peer-support reinforcement. ITT=intent to treat, baseline value carried forward (no change) for missing six-month outcomes.
Table 2. American Indian/Alaska Native Subgroup, Baseline and Six Month Changes

<table>
<thead>
<tr>
<th>Outcome Variable</th>
<th>Baseline</th>
<th>Six Month Change</th>
<th>Control vs. Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control Mean (S.D.) N=50</td>
<td>Treatment Mean (S.D.) N=60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treatment Mean (S.D.) N=38</td>
<td>Treatment Mean (S.D.) N=35</td>
<td>Effect Size P P</td>
</tr>
<tr>
<td>A1c</td>
<td>6.71 (1.25)</td>
<td>7.12 (1.59)</td>
<td>0.206 (0.973)</td>
</tr>
<tr>
<td>Health Distress (0-5)↓</td>
<td>2.26 (1.24)</td>
<td>2.06 (1.24)</td>
<td>-0.151 (0.730)</td>
</tr>
<tr>
<td>Activity Limitation (0-4)↓</td>
<td>1.48 (1.12)</td>
<td>1.14 (1.03)</td>
<td>-0.092 (0.730)</td>
</tr>
<tr>
<td>PHQ Depression (0-27)↓</td>
<td>8.60 (6.35)</td>
<td>8.33 (5.67)</td>
<td>-0.737 (3.84)</td>
</tr>
<tr>
<td>PAM Patient Activation (0-100)↑</td>
<td>63.3 (15.8)</td>
<td>63.8 (14.8)</td>
<td>4.47 (16.4)</td>
</tr>
<tr>
<td>Self Efficacy (1-10)↑</td>
<td>6.74 (1.86)</td>
<td>6.39 (2.29)</td>
<td>-0.056 (1.40)</td>
</tr>
<tr>
<td>Aerobic exercise (min/week)↑</td>
<td>93.1 (133)</td>
<td>81.2 (103)</td>
<td>3.32 (118)</td>
</tr>
<tr>
<td>Physician Visits (last 6 months)</td>
<td>3.42 (3.53)</td>
<td>3.17 (3.38)</td>
<td>-0.658 (1.86)</td>
</tr>
</tbody>
</table>

Notes: Effect Sizes are computed as the difference in change scores between treatment and control groups divided by the pooled baseline standard deviation. Negative effect sizes indicate that the control group did better than the treatment group.

P Values are from ANCOVA models controlling for baseline outcome variable and demographic variables, and assess the likelihood that there would have been no difference between the treatment and control group.

Possible ranges are given in parentheses next to outcome variables, and arrows indicate desirable directions.