Independent Metabolic Syndrome Variants Predict New Onset Coronary Artery Disease

Running Head: Metabolic patterns and coronary disease onset

Dhananjay Vaidya PhD¹, Rasika A Mathias PhD¹, Brian G Kral, MD¹,², Lisa R Yanek, MS¹, Lewis C. Becker, MD², Diane M Becker, ScD¹

¹Department of Medicine, Division of General Internal Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
²Department of Medicine, Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD

Corresponding author:
Dhananjay Vaidya, PhD
Email: dvaidya1@jhmi.edu

Submitted 2 December 2009 and accepted 1 March 2010.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: Any combination of metabolic abnormalities may constitute the “metabolic syndrome” (MetS), conferring coronary artery disease (CAD) risk, but the independent effect of different combinations on CAD onset remains unknown.

Research Design and Methods: Healthy adult siblings (N=987) of premature CAD (<60 years) cases were followed for 9.8 ± 3.8 years. Baseline MetS variables (insulin sensitivity index, waist circumference, systolic blood pressure, HDLC, and triglycerides) were recombined into 5 principal components (PC1-5) and risk-factor adjusted proportional hazards for CAD onset of median-dichotomized PCs estimated.

Results: The significant hazard ratios were, for PC1 (all abnormalities except blood pressure) 1.66 (p=0.036), PC2 (high blood pressure levels, high HDLC) 1.71 (p=0.016), and PC4 (low HDLC, high insulin sensitivity, low triglycerides) 2.0 (p=0.001). Traditionally defined MetS had a HR of 1.32 (p=0.18).

Conclusion: Independent MetS variants identified by PC analysis may explain metabolic mechanisms that increase CAD risk better than the presence of traditional MetS.
A common approach to examining the “metabolic syndrome” (MetS) uses a simple count without taking into account the correlation structure of dichotomous metabolic abnormalities including increased blood pressure, high triglyceride levels, low HDL cholesterol levels, abdominal obesity, and impaired glucose control (1). The goal of this study is to define the structure of independent patterns of metabolic syndrome variables, and determine their ability to predict new onset coronary artery disease (CAD).

METHODS

Population and Follow-up: The study was approved by the Johns Hopkins Institutional Review Board. Subjects gave informed consent. The sample included 987 apparently healthy white and African American siblings (<60 years) of index cases (each identifying one of 522 families) admitted to hospitals with CAD events at <60 years of age. New onset CAD events were followed up over a mean period of 9.8 (SD 3.8) years. Details regarding index cases and follow-up adjudication are included in the online supplement which is available at http://care.diabetesjournals.org.

Screening and Metabolic Measures: Detailed measurement techniques for blood pressure, fasting lipid profile, glucose and insulin are included in the online supplement. In addition to variables used by NCEP-ATP-III (1), namely, systolic blood pressure (SBP), fasting triglycerides (TG) and HDL-cholesterol (HDLC), and waist circumference (WC), we included the Quantitative Check Index of Insulin Sensitivity (QUICKI = \(1/([\log(\text{fasting insulin}) + \log(\text{fasting glucose})])\)) (2) because other definitions of MetS (3; 4) include insulin resistance.

Statistical Methods: Principal component (PC) calculation adjusting for age, sex, and family structure, and their interpretation are detailed in the online supplement. PC variants were dichotomized at the median score. Cox proportional hazard models were evaluated with age of CAD onset as the underlying time scale, adjusting for sex, race, current smoking, LDL cholesterol, and blood pressure medication use. A regression model for NCEP-ATP III MetS (defined as in reference (1)) was also estimated.

RESULTS

Sample Characteristics: The sample of 987 individuals consisted of 40% male, 58% African-American, and had an age range of 27-60 years. Online Table A1 shows baseline sample characteristics by new onset CAD event status during follow-up (106 events in 99 families).

Principal Components Analysis of Metabolic Variables: Online Table A2 shows the proportion of variance in the metabolic variables explained by the five PC-derived components, and their eigenvector weights. Nearly half, 49%, of the variance is explained by the first principal component (PC1), which represents quantitatively greater waist and TG and lower HDL-C and insulin sensitivity when positive, and the converse when negative. PC1 values strongly correlate with the prevalence of NCEP-defined MetS (highest PC1 quartile: 92%, lowest PC1 quartile 2% NCEP-MetS prevalence, trend p<0.001). Positive scores for other PC axes represent the following: PC2 - high SBP and high HDLC, PC3 - low WC and high QUICKI with high SBP and TG, PC4 - high QUICKI and low TG but with low HDLC, PC5 - high QUICKI, large WC, and high TG; negative scores represent opposite patterns.

Association of Metabolic Syndrome Principal Components with New Onset Coronary Artery Disease: Unadjusted incidence curves by PC score are shown in
online supplement Figure A1. The age, sex, race and risk-factor adjusted relative hazards of the PCs (dichotomized at the median) and NCEP-ATP III MetS are shown in the figure. PC1, PC2 and PC4 are independently associated with a significant hazard ratio of new onset CAD. The hazard ratio associated with the higher level of PC1 is greater than that associated with the NCEP-defined MetS (estimated in a separate model), which is not statistically significant in this sample.

DISCUSSION

This is the first study demonstrating the association of PC-derived independent metabolic syndrome variants with new onset CAD events in an initially healthy population. PC4 representing lower HDL-C levels in the absence of insulin insensitivity and other metabolic variables doubles the risk of CAD. PC1, although it resembles the ATP-III-defined MetS (1), produces a much more potent estimate of risk for incident CAD than the ATP-III defined MetS, because it weights the metabolic abnormalities better than a simple count. Furthermore, the linear PC combination thresholded at the mean may be more efficient than the predefined traditional thresholds. PC2 representing mostly higher systolic blood pressure in an otherwise healthy metabolic context causes a 70% increase in the risk of incident CAD. In addition, the PC analysis also shows that higher triglyceride levels as found in PC3 and PC5 are not associated with incident CAD unless they occur in the presence of multiple other metabolic risk factors, as in PC1. Importantly, these CAD-related PC variants are not captured in the NCEP-ATP-III MetS.

Although PC4 represents only 9% of the metabolic variation, it is significantly associated with incident CAD independently of the other variables and PC variables. This component (insulin sensitivity combined with lower HDL-C and lower TG) would be ignored by previous PC analyses (5; 6) where dimensionality reduction, rather than defining CAD risk, was the primary intent.

Systemic manifestations of insulin resistance underpin for the pattern of correlation represented by our PC1 (7). Superimposed on PC1, HDL-C levels are associated with differential risk based on the pattern of other metabolic variables. We may speculate that as lipid dysmetabolism including atherogenic subfractions of HDL may manifest as PC2 (8). However, unifying biological themes may underlie the other PC variables and remain to be discovered.

Strengths and Limitations: The prospective design allowing analysis of the age of CAD onset in an easily identifiable white and African American high risk cohort is a significant strength. Further replication in the general population would make the study results more widely applicable. A limitation of PC analysis is that the choice of variables can be somewhat arbitrary. However, variables we chose include important features of most current MetS definitions.

CONCLUSION

We have shown that independent of the well-known MetS pattern, and superimposed upon it, there is significant risk of CAD conferred by two other novel metabolic patterns - high blood pressure with high HDL-C, and high insulin sensitivity with low HDL-C and low triglycerides. Further basic and clinical research is needed to elucidate the biological underpinnings of our results.

ACKNOWLEDGEMENTS AND FUNDING SOURCES

Supported by the NIH Grants NR02241, HL49762, HL59684, and RR 025005.

Disclosures: The authors have no conflicts to disclose.
REFERENCES:

Figure Legends:

Figure 1
Hazard ratios for CAD and 95% confidence intervals for baseline metabolic status for the NCEP-defined metabolic syndrome (MetS present vs. MetS absent) in one model, and all 5 PCA scores dichotomized at the median (score > median vs. ≤ median) in the other model. Models adjusted for age, sex, race, smoking, total cholesterol and BP medication use.