Effects of Exenatide and Lifestyle Modification on Body Weight and Glucose Tolerance in Obese Subjects With and Without Prediabetes

Julio Rosenstock, MD1; Leslie J. Klaff, MD, PhD2; Sherwyn Schwartz, MD3; Justin Northrup, MPT4; John H. Holcombe, MD5; Kenneth Wilhelm, MD6; Michael Trautmann, MD4

1Dallas Diabetes and Endocrine Center at Medical City, Dallas, Texas, United States\
2Rainier Clinical Research Center, Renton, Washington, United States\
3Diabetes & Glandular Disease Research Associates, San Antonio, Texas, United States\
4Eli Lilly and Company, Indianapolis, Indiana, United States\
5Lilly USA, LCC, Indianapolis, Indiana, United States\
6Amylin Pharmaceuticals, Inc., San Diego, California, United States

Correspondence to: Julio Rosenstock, MD
E-mail: juliorosenstock@dallasdiabetes.com

Clinical trial registration: NCT00500370; ClinicalTrials.gov

Submitted 1 July 2009 and accepted 8 March 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: Assess the effects of exenatide on body weight and glucose tolerance in non-diabetic, obese subjects with normal or impaired glucose tolerance (IGT) or impaired fasting glucose (IFG).

Research Design and Methods: Obese subjects (N=152; age 46±12 years, female 82%, weight 108.6±23.0 kg, BMI 39.6±7.0 kg/m², IGT or IFG 25%) were randomized to receive exenatide (n=73) or placebo (n=79), along with lifestyle intervention, for 24 weeks.

Results: Exenatide-treated subjects lost 5.1±0.5 kg from baseline versus 1.6±0.5 kg with placebo (exenatide – placebo, \(P<0.001\)). Placebo-subtracted difference in percent weight reduction was -3.3%±0.5 (\(P<0.001\)). Both groups reduced their daily calorie intake (exenatide, -449 cal; placebo, -387 cal). IGT or IFG normalized at endpoint in 77% and 56% of exenatide and placebo subjects, respectively.

Conclusions: Exenatide plus lifestyle modification decreased caloric intake and resulted in weight loss in non-diabetic obesity with improved glucose tolerance in subjects with IGT and IFG.
Several well-designed trials have demonstrated that weight reduction can reduce diabetes risk (1-4). However, with only lifestyle modification even modest weight loss is difficult to achieve over time (5,6); therefore, optimal pharmacologic strategies for treating obesity are being developed. This study explored exenatide in combination with lifestyle modification as treatment for weight loss in non-diabetic, obese subjects with normal (NGT), impaired glucose tolerance (IGT), or impaired fasting glucose (IFG).

RESEARCH DESIGN AND METHODS
Obese adult subjects with a body mass index (BMI) ≥30 kg/m² were included. Subjects with type 2 diabetes, previous use of glucose-lowering medications for >3 months, or unstable body weight prior to screening were excluded. At screening, subjects received an oral glucose tolerance test (OGTT) to stratify into subgroups: 1) NGT; 2) IGT: fasting glucose <7 mmol/L and 2-hour postprandial glucose ≥7.8 and <11.1 mmol/L) or IFG: fasting glucose 6.1 to 6.9 mmol/L and 2-hour postprandial glucose <7.8 mmol/L). Subjects then participated in a 1-week, single-blind, placebo lead-in period prior to randomization to exenatide (10 mcg with a 4-week 5 mcg dose-initiation period) or placebo administered before morning and evening meals. A structured program of diet and physical activity was implemented through Week 24. Subjects fasted overnight and study drug was withheld prior to OGTT assessments. A follow-up visit was conducted 4 weeks after study completion.

The primary endpoint was the effect of exenatide on body weight. Secondary endpoints included assessment of change in glucose and lipid concentrations, HbA1c, blood pressure, physical activity, and food intake. Primary analyses were based on the intent-to-treat (ITT) sample and a mixed model repeated measures (MMRMRM) analysis of covariance. Least squares (LS) means were produced to estimate the magnitudes of treatment effects.

RESULTS
Of 322 participants screened, 163 were randomized, 152 received at least one dose of study drug (ITT sample), 102 completed treatment through 24 weeks, and 96 completed a follow-up visit after being off study drug for approximately 4 weeks. Average BMI was 39.6±7.0 kg/m² and 38 subjects had IGT or IFG at baseline. The withdrawal rate was 34% for exenatide and 32% for placebo; baseline characteristics were comparable to completers. Adverse events accounted for 9 withdrawals (5 related to nausea) with exenatide and 3 with placebo. Mean baseline body weight was 109.5±2.7 and 107.6±2.6 kg with exenatide and placebo, respectively. Exenatide-treated subjects lost 5.1±0.5 kg from baseline versus 1.6±0.5 kg with placebo (exenatide – placebo, P<0.001). A placebo-subtracted difference in percentage weight reduction was first observed at Week 4 (-0.9±0.4, P=0.03) and remained at Week 24 (-3.3±0.5, P<0.001). Subjects who returned after being off study drug for approximately 4 weeks sustained weight loss with increases of only 0.5 kg in both groups. A greater percentage of exenatide-treated subjects experienced ≥5% body weight reduction at 24 weeks compared with placebo (32% vs. 17%, respectively, P=0.039). Exenatide-treated subjects who did (n=18) or did not (n=55) experience nausea had mean body weight reductions at 24 weeks (nausea: -3.8±1.2 kg; no nausea: -4.1±0.8 kg).

Most subjects with IGT or IFG normalized glucose tolerance at endpoint (exenatide, 77%; placebo 56%). Five participants (3 exenatide; 2 placebo) developed type 2 diabetes during the study; 3 of which (2 exenatide; 1 placebo) had IGT or IFG at
baseline. Both groups significantly ($P<0.05$) reduced their daily calorie intake (exenatide, -449±64 cal; placebo, -387±63 cal). Significant baseline to endpoint changes were not observed for HbA1c, fasting glucose, OGTT, and physical activity.

No deaths, serious adverse events, or hypoglycemia were observed during the study. Nausea was experienced by 25% and 4% and diarrhea by 14% and 3% of exenatide- and placebo-treated subjects, respectively. The majority of adverse events were mild or moderate in severity.

CONCLUSIONS

GLP-1 receptor agonists are among the few treatments for type 2 diabetes in which significant weight loss has been recognized as an added value. This study of exenatide, combined with a pragmatic lifestyle intervention, was designed to evaluate the potential for weight loss in obese (mean baseline BMI 39.6 kg/m2), non-diabetic subjects in clear need for therapeutic intervention, as recommended by current guidelines (7,8). Exenatide treatment plus lifestyle modification was associated with significantly greater mean percent reduction in body weight (treatment difference, -3.3%) than lifestyle modification alone. The placebo-subtracted change in weight (-3.5 kg) was similar to the change observed with liraglutide at the 2.4 mg dose (9). It is unknown if higher doses of exenatide might achieve greater weight reductions than those observed in the present study.

Although we did not evaluate possible mechanisms to explain the substantial weight-loss observed, GLP-1 receptor agonism may activate central pathways mediating satiety- and nausea-regulating mechanisms (10,11). The finding that weight loss in exenatide-treated subjects with type 2 diabetes is sustained in the absence of continued nausea (12) supports a satiety-related mechanism (10,13).

Normalization of glucose tolerance and reduction of caloric intake favored subjects treated with exenatide. The current findings warrant further studies to explore the potential role of GLP-1 receptor agonists for the treatment of obese subjects with IGT or IFG. Exenatide, in addition to lifestyle modification, has potential as a treatment for obesity in subjects at high risk for developing type 2 diabetes. Because of the high recidivism observed with weight loss interventions, sustained weight loss demonstrated in long-term studies is a key issue for future anti-obesity research.

ACKNOWLEDGEMENTS

This study was supported by Eli Lilly and Company and Amylin Pharmaceuticals, Inc. We wish to thank the subjects, investigators, and their staffs for participating in this study. We also wish to thank Dr. Dachuang Cao for providing statistical support. Parts of this study were presented in abstract form at the 3rd International Congress on Prediabetes and Metabolic Syndrome (Nice, France, 1-4 April 2009) and the Endocrine Society’s Annual Meeting (Washington, DC, 10-13 June 2009). Additional study investigators: L. Thurman, P. Campbell, K. Charani, W. Figueroa, C. Fogarty, A. Gupta, R. Khairi, L. Kirby, E. Ross, T. Smith, M. Cox, and K. Hoppock.

Disclosure: J. Rosenstock, L. Klaff, and S. Schwartz are clinical trial investigators for Eli Lilly and Company and Amylin Pharmaceuticals, Inc. M. Trautmann, J. Holcombe, and J. Northrup are employees of Eli Lilly and Company. K. Wilhelm is an employee of Amylin Pharmaceuticals, Inc. Eli Lilly and Company and Amylin Pharmaceuticals, Inc. are involved in the development of exenatide.

J. Rosenstock has served on advisory boards and received honorarium or consulting fees from Pfizer, Roche, Sanofi-Aventis, Novo Nordisk, Eli Lilly, MannKind, GlaxoSmithKline, Takeda, Daiichi Sankyo,
Exenatide in obese subjects without diabetes

Forest, Johnson & Johnson, Novartis, Boehringer Ingelheim, and Amylin. J. Rosenstock has received research grants from Merck, Pfizer, Sanofi-Aventis, Novo Nordisk, Roche, Bristol-Myers Squibb, Eli Lilly, Forest, GlaxoSmithKline, Takeda, Novartis, AstraZeneca, Amylin, Johnson & Johnson, Daiichi Sankyo, MannKind, and Boehringer Ingelheim. S. Schwartz has conducted clinical trials and/or provided consultation for Abbott, Amgen, AstraZeneca, Aventis, Becton-Dickson Co, Bristol-Myers, Dexcom, Forest Lab, Genentech, GlaxoSmithKline, Johnson & Johnson, LifeScan, Medisense, Medtronic, Merck, Novartis, Novo Nordisk, Proctor & Gamble, Pfizer, Roche, Solvay, and Takeda. L. Klaff has received research/grants support from Eli Lilly, Novo Nordisk, GlaxoSmithKline, Boehringer Ingelheim, Forest Research, and Merck.

FIGURE LEGEND

Figure 1 – Changes in body weight over 24 weeks in non-diabetic, obese subjects treated with lifestyle intervention and randomized to exenatide or placebo. White circles, placebo (N = 78); Black triangles, exenatide (N = 73). Results derived from mixed model repeated measures analysis and presented as least squares (LS) mean±SE. Change from baseline: * P < 0.001, † P < 0.05.
REFERENCES

Figure