Infliximab for Diabetic Macular Edema Refractory to Laser Photocoagulation: a Randomized, Double-Blind, Placebo-Controlled, Crossover, 32 Weeks Study

Running title: Infliximab for diabetic macular edema

PETROS P. SFIKAKIS, MD¹, VLASSIS GRIGOROPOULOS, MD², IOANNIS EMFIETZOGLOU, MD², GEORGE THEODOSSIADIS, MD², NICHOLAS TENTOLOURIS, MD¹, EVI DELICHA, PhD¹, CHRISTINA KATSIARI, MD¹, KLEOPATRA ALEXIADOU, MD¹, ERIFILI HATZIAGELAKI, MD³, PANAYIOTIS G. THEODOSSIADIS, MD³

¹First Department of Propaedeutic and Internal Medicine, Laiko General Hospital; ²Ophthalmology Department, Henry Dynan Hospital, ³Ophthalmology Department, Attikon Hospital, Athens University Medical School, Athens Greece

Corresponding author:
P. P. Sfikakis
Email:psfikakis@med.uoa.gr

Clinical trial reg. no. NCT00505947; www.clinicaltrials.gov

Submitted 29 December 2009 and accepted 1 April 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective. Since many patients with diabetic macular edema do not respond to focal/grid laser photocoagulation, the only currently approved treatment, alternatives are needed. Based on encouraging preliminary findings, we aimed to assess efficacy and safety of the anti-TNF monoclonal antibody infliximab in this condition.

Research Design and Methods. Single-center, double-blind, randomised, placebo-controlled, crossover study (www.clinicalTrials.govNCT00505947). Eleven patients with sight-threatening diabetic macular edema persisting after 2 sessions of laser photocoagulation received infliximab (5mg/kg) intravenously at weeks 0, 2, 6, and 14, followed by placebo at weeks 16, 18, 22, and 30, or vice versa. Blinding was maintained to week 32, when the final assessments were performed. Best corrected visual acuity evaluated by mixed models approach for imbalanced crossover design using the percentage difference as outcome variable was the primary study endpoint. Data were analysed on intention to treat basis.

Results. EDTRS scores dropped from 31.6±5.1 (mean±SD letters read) at baseline to 28.8±11.6 at week 16 in 6 placebo-treated eyes and improved to 35.4±11.2 after infliximab. In contrast, visual acuity improved from 23.5±10.3 at baseline to 30.4±13.4 letters at week 16 in 8 infliximab-treated eyes and was sustained at completion of placebo treatment (31.4±12.1). The excess visual acuity in infliximab-treated eyes was greater by 24.3% compared with placebo-treated eyes (95%CI:[4.8%-43.7%], P=0.017). Infliximab treatment was well tolerated.

Conclusions. The positive results of this small phase III study suggest that larger and longer term trials should assess the efficacy of systemic or intravitreal anti-TNF agent administration for primary treatment of diabetic macular edema.
Diabetic macular edema (DME) is a serious complication of diabetes mellitus and a leading cause of vision loss in the working-age population of most developed countries (1, 2). Data from the Wisconsin Epidemiological Study of Diabetic Retinopathy estimate that after 15 years of known duration of diabetes the prevalence of DME is 20% in patients with type 1 diabetes mellitus, 25% in patients with type 2 diabetes who are treated with insulin, and 14% in the patients with type 2 diabetes who are not treated with insulin (3). A previous study has shown that 53% of the eyes with DME involving the centre of the macula, lost two or three lines of visual acuity over a two year period (4). Focal/grid laser photocoagulation (two sessions for optimal results) has been the standard for treatment of DME over the past two decades. However, this treatment effectively reduces the risk of vision loss in less than 50% of cases. Even among those patients who achieve an initial response recurrences requiring ongoing treatment are common, (1, 5). Currently, there are no approved treatment options for eyes with DME refractory to laser photocoagulation (2, 6).

Tumor necrosis factor (TNF) is a pleiotropic cytokine, central to the development and homeostasis of the immune system and a regulator of cell activation, differentiation and death. In the last decades there has been an enormous scientific and clinical interest in understanding TNF’s function in physiology and disease and a vast amount of data has accumulated at the biochemical, molecular and cellular level, establishing TNF as a prototype for in-depth understanding of a cytokine’s physiological and pathogenic functions (7). This knowledge primed the successful development of anti-TNF therapies in the 1990’s. Infliximab (REMICADE®) is a chimeric monoclonal antibody specific for human TNF that has shown efficacy in treating chronic inflammatory diseases affecting the joints, skin and gut. Since it’s first launch in 1998, more than 1.100.000 patients worldwide have been treated with this drug for approved indications, including rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, plaque psoriasis and Crohn’s disease, including pediatric patients (8). Infliximab is given intravenously every 4 to 8 weeks at a dose ranging from 3 to 10 mg/Kg and has an acceptable safety profile.

Several lines of evidence suggest an inflammatory basis for DME (9). Along this line, treatment modalities have been tried with variable success. Such treatments include pharmacologic therapy with oral protein kinase C inhibitors (10), antibodies targeted at vascular endothelial growth factor (VEGF) (11), intravitreal injections of corticosteroids (12, 13), and high doses of non-steroidal anti-inflammatory drugs that lower retinal expression of TNF (14). According to our previously published preliminary results, a clinically meaningful recovery of useful vision was achieved after two infliximab infusions in 4 of 6 eyes with severe diffuse DME (15). Comparable beneficial results have been obtained in patients with severe, chronic cystoid macular edema complicating intermediate uveitis, Adamantiades-Behcet’s disease, or adult-type vascular pseudotumor (16). Repeated treatment in one diabetic patient produced a further significant improvement of DME (15), suggesting that the clinical response to anti-TNF dosing regimens is individualized, as observed in patients with arthritis (8), or in patients with uveitic macular edema (16).

Based on the evidence for anti-TNF treatment in DME and the limitations of current treatments, we undertook this phase III study to prospectively investigate the efficacy and safety of infliximab in the treatment of patients who were in danger of vision loss due to DME refractory to laser photocoagulation.
RESEARCH DESIGN AND METHODS
This is an investigator-initiated phase III double-blind, randomised, placebo-controlled, two-armed crossover clinical study. The study adhered to the guidelines of the Declaration of Helsinki and the protocol and consent form were approved by the local investigational review board, the National Ethics Committee and the Ministry of Health. Each patient provided written informed consent. The study is registered at www.clinicalTrials.gov under the identifier NCT00505947. Funding for this study was provided by Centocor Inc, Malvern, PA, USA.

Patient Eligibility and Exclusion criteria. Patients (aged > 18 years) with type 1 or type 2 diabetes mellitus and DME resulting in best corrected visual acuity (BCVA) of 0.4 or lower were eligible if they had at least 2 previous sessions of laser photocoagulation more than 6 months before enrolment or if they had leaking microaneurysms within the foveal avascular zone making laser photocoagulation unsafe for the central vision. In addition to standard inclusion and exclusion criteria for phase III studies of infliximab, patients were excluded if they had: a) vitreoretinal traction, b) retinal detachment, c) proliferative diabetic retinopathy requiring immediate panretinal photocoagulation, d) any previous eye surgery 6 months before the study, including any intravitreal infusions, e) macular edema of ischaemic type or caused by retinal conditions other than diabetes, f) cataract or media opacities of a degree which precluded accurate retinal photographs or optical coherence tomography (OCT) measurement, g) hard exudates under the fovea, or h) uncontrolled arterial hypertension (blood pressure above 180/110 mmHg), major change in glycemic control (e.g. 2% change in HbA1c) within the last 6 months or change in daily number of insulin injections.

Study protocol. Consenting patients were screened for the study within 2 weeks prior to randomization with a medical history, physical examination, electrocardiogram, purified protein derivative test, chest X-ray, laboratory tests including hemoglobin, HbA1c, platelet count, white blood cell count and differential, AST, ALT, γ-GT, alkaline phosphatase, total and conjugated bilirubin, LDH, plasma lipids [total cholesterol, HDL-C, triglycerides], creatinine phosphokinase, renal function (urea, creatinine), sodium, potassium, calcium, phosphate, and serologic tests for hepatitis and HIV. In addition, an experienced examiner obtained ophthalmic/DME history and performed in both eyes measurements of BCVA, ocular coherence tomography, stereoscopic fundus photographs (7 fields), applanation tonometry and fluorescein angiography.

Patients were randomly allocated 1:1 to receive placebo or infliximab as in two armed crossover, double-blind design according to the permuted block randomization list generated in SAS. Patients received placebo at weeks 0, 2, 6, and 14, followed by infliximab at weeks 16, 18, 22, and 30 (group A), or vice versa (group B) on top of standard therapy for diabetes, hypertension and dislipidemia which remained unchanged during the study. All study drugs administered via a 2-hour intravenous infusion at a dose of 5 mg/kg body weight, on the scheduled visits at weeks 0, 2, 6, 14, 16, 18, 22, and 30. Blinding was maintained to week 32, when the final clinical, laboratory and ophthalmic evaluation was performed in all patients. Finally, adverse event reporting and complete physical examination were performed at week 56 (long term follow-up visit).

Physical examination and BCVA measurements of the number of letters a patient was able to read from the Early Treatment Diabetic Retinopathy study (ETDRS) charts with correction for individual refractive errors were performed at every visit. Foveal thickness measurements by Third Generation OCT (Stratus-OCT-III),
Infliximab for diabetic macular edema

using the Fast Macular Thickness scan, stereoscopic fundus photographs (7 fielded) and intraocular pressure (IOP) measurements using a Goldman applanation tonometer were performed at weeks 8, 16, 24, and 32. Hematologic/ biochemical tests and fluorescein angiograms were performed at weeks 16 and 32. Study physicians were blinded to the subject’s treatment (infliximab or placebo), as well as to the subject’s previous visual acuity assessments.

Outcome measures and statistical analysis. The primary endpoint of the study was to assess the efficacy and safety of 4 infusions of infliximab on BCVA, evaluated by mixed models approach for imbalanced crossover design using the percentage difference between infliximab and placebo groups as outcome variable. The secondary endpoints were a) the effect of infliximab on anatomical change of DME, assessed by OCT and b) the effect of infliximab on diabetic retinopathy, assessed by fundus photographs, and fluorescein angiographic studies. Data were analyzed on an Intention to Treat basis. The treatment effect of infliximab versus placebo in macular thickness and fundus photographs results, was also evaluated by mixed models approach for imbalanced crossover design using the percentage difference as outcome variables. Carry over effect was also tested in this model. The Residual Maximum Likelihood (REML) technique was used for estimating variance components.

The primary objective of the study was to assess the efficacy and safety of 4 infusions of infliximab on BCVA, evaluated by mixed models approach for imbalanced crossover design using the percentage difference between infliximab and placebo groups as outcome variable. The secondary endpoints were a) the effect of infliximab on anatomical change of DME, assessed by OCT and b) the effect of infliximab on diabetic retinopathy, assessed by fundus photographs, and fluorescein angiographic studies. Data were analyzed on an Intention to Treat basis. The treatment effect of infliximab versus placebo in macular thickness and fundus photographs results, was also evaluated by mixed models approach for imbalanced crossover design using the percentage difference as outcome variables. Carry over effect was also tested in this model. The Residual Maximum Likelihood (REML) technique was used for estimating variance components.

The primary endpoint of the study was to assess the efficacy and safety of 4 infusions of infliximab on BCVA, evaluated by mixed models approach for imbalanced crossover design using the percentage difference between infliximab and placebo groups as outcome variable. The secondary endpoints were a) the effect of infliximab on anatomical change of DME, assessed by OCT and b) the effect of infliximab on diabetic retinopathy, assessed by fundus photographs, and fluorescein angiographic studies. Data were analyzed on an Intention to Treat basis. The treatment effect of infliximab versus placebo in macular thickness and fundus photographs results, was also evaluated by mixed models approach for imbalanced crossover design using the percentage difference as outcome variables. Carry over effect was also tested in this model. The Residual Maximum Likelihood (REML) technique was used for estimating variance components.

Statistical analysis was performed by SAS v9.1.3 statistical software.

RESULTS

Patients. Demographic and disease characteristics of the 11 treated patients are shown in Table 1. There were 3 women and 8 men, aged between 40 and 73 years, with diabetes duration ranging between 3 and 20 years (1 patient with type 1 and 10 patients with type 2 diabetes). The additional enrolled patient, aged 72, was randomised to initially receive placebo (Group A), but suffered from acute myocardial infarction 2 days before the first scheduled injection and withdrew from the study. One patient from group A withdrew consent at week 18 after receiving 4 placebo injections and the first infliximab injection. In total 14 eyes were eligible for analysis (6 eyes in Group A, including this patient’s response to placebo treatment, and 8 eyes in Group B, Table 1).

Primary study objective: changes in best corrected visual acuity. Individual values of BCVA at baseline, week 16 (end of the first study treatment) and week 32 (final evaluation after the second study treatment) are shown in Table 1. Baseline BCVA was not different between groups (31.6±5.1 vs. 23.5±10.3, t=1.7, P=0.10). As shown in Figure 1A, BCVA decreased from 31.6±5.1 at baseline to 28.8±11.6 at week 16 in eyes treated initially with placebo, and subsequently increased to 35.4±11.2 at completion of infliximab treatment (week 32). On the other hand, BCVA increased from 23.5±10.3 at baseline to 30.4±13.4 at week 16 in eyes treated initially with infliximab, and remained essentially unchanged at completion of placebo treatment (31.4±12.1, week 32).

Collectively, 4 infusions of infliximab resulted in an increase of BCVA, from
Infliximab for diabetic macular edema

mean±SD 25.5 ± 10.7 (range 6-40) to 32.3 ± 12.4 (range 9-47) letters read (n=13). In contrast, BCVA remained essentially unchanged in placebo-treated eyes (n=14), from 31.5 ± 10.5, range 9-45 to 31.1 ± 11.3, range 10-43). Least square means indicated that infliximab administration resulted in 28.6% while placebo resulted in 4.3% improvement in visual acuity. A possible carry over effect of infliximab in the second part of the study was tested in this model and was found to be non-significant. Overall, the improvement of visual acuity in the infliximab treated eyes was significantly greater by 24.3% compared with placebo-treated eyes (95%CI 4.8%-43.7%, P=0.0167) (Figure 1B).

Secondary anatomic and vision-related objectives. A similar analysis failed to reveal a significant effect of infliximab over placebo in the secondary end-points of the study. Least square means indicated that central macular thickness assessed by OCT decreased by 3.7 % with infliximab and increased by 1.3 % with placebo (P>0.5). Moreover, no significant difference between infliximab and placebo could be demonstrated in the scores of fundus photographs graded according to the ETDRS protocol.

Baseline versus 32-week evaluation measurements. As shown in Table 2, the following changes from baseline (-2 week) to the end of the study (32 weeks) were evident in our 10 patients (13 eyes) who, either in the first or second part of the study, received 4 infliximab infusions:

BCVA improved by at least one line (5 letters in the ETDRS chart) in 10 of 14 eyes (77%), whereas 5 eyes (38 %) gained 2 or more lines, 2 eyes remained stable and one eye worsened by 5 letters.
Foveal thickness decreased by more than 10 % in 5 eyes (38 %), remained stable in 5 eyes, and increased by more than 10 % in 3 eyes.

Finally, as documented by both fundus photographs and fluoroangiography, the status of diabetic retinopathy improved in 3 eyes, remained stable in 5 and deteriorated in one eye. Fundus photographs and fluoroangiography yielded conflicting results in the remaining 4 eyes.

Safety issues. Infliximab was well tolerated and no safety issues emerged from hematologic monitoring, urinalysis or ophthalmic assessments, including IOP or cataract formation during the study. Moreover, no significant impact of placebo or infliximab on glycemic control was noted. One male patient (aged 64, with diabetes type 2 of 4 years duration, Table 1) was diagnosed with breast cancer 5 months after the baseline evaluation. This condition was considered unrelated to infliximab treatment, since a slightly palpable mass leading to the final diagnosis was revealed in physical examination at week 18, only 14 days after the first infliximab injection. Another male patient (aged 73, with diabetes type 2 of 18 years duration, Table 1) developed upper respiratory tract infection treated successfully with antibiotics at week 29, while receiving placebo. Finally, one male patient (aged 71, with diabetes type 2 for 11 years, Table 1) developed a neuro-ischemic foot ulcer at week 51 (18 weeks after receiving the 8th study injection-placebo).

CONCLUSIONS

Evidence suggests that an altered local expression of TNF may play an important role in the pathogenesis of DME (17, 18) and that low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy (9). Moreover, studies in patients with arthritis have shown that anti-TNF therapy negatively affects vascular permeability and angiogenesis by decreasing VEGF (19), which has been implicated directly in the pathogenesis of DME and diabetic retinopathy (2, 9, 11). Although studies have shown the possible benefits of intravitreal corticosteroids and
anti-VEGF antibodies in the treatment of DME, focal/grid laser photocoagulation continues to be the only proven safe and effective treatment (2). Still, this treatment targets only advanced stages of the disease. It is noteworthy that there are no previous randomised placebo-controlled phase III studies for any treatment option in DME. The present study included patients with sight-threatening DME which was unmanageable by laser photocoagulation. Of the 14 evaluable eyes, 12 had previously received at least 2 laser sessions (maximum 8 sessions, eye # 12, Table 1). The two remaining eyes had leaking microaneurysms within the foveal avascular zone making laser photocoagulation unsafe for the central vision. In view of our published encouraging preliminary results with infliximab (15), the cross-over design of this phase III study was decided in order for all participants with sight-threatening DME to able to receive infliximab and to enhance the statistical power of the study. Due to the strict study exclusion criteria, and since intravitreal administration of anti-VEGF agents has been increasingly used over the past 2 years in Greece, we were able to recruit only 12 patients. Thus, the main limitation of the present study is the small sample size limiting statistical analysis and not insuring that randomization balances all known and unknown risk factors between groups. However, the mean duration of diabetes, as well as the mean number of previous laser treatments and length of time since last session were similar (Table 1), whereas baseline BCVA was also not different between groups. Despite the small sample size, our short crossover trial of a conventional dose of infliximab demonstrated a significant improvement over placebo on the severely impaired visual acuity of these patients. Infliximab, either as first or second agent resulted in almost similar increases in BCVA (6.9 and 6.6 mean letters read, respectively). Thus, this infliximab-induced mean observed improvement of almost 7 letters read in the EDTRS chart is comparable to the mean gain in BCVA at 6 months in DME patients treated with 4 intravitreal injections of the anti-VEGF agent ranibizumab (11). Moreover, at the end of the study BCVA improved by at least one line in 77% and by at least 2 lines in 38% of infliximab-treated eyes. These results are considered clinically important given the fact that patients included in this study were unsuitable for all available approved treatment options. It seems that Improvement of BCVA was not correlated with the secondary anatomic and vision-related endpoints, since neither an anatomical improvement of DME by OCT, nor a decrease in fundus photographs grading by the ETDRS protocol could be demonstrated. A recent study of 323 eyes from a randomized clinical trial of two methods of laser photocoagulation for DME found that the OCT-based assessment of the extensiveness of DME neither explains additional variation in baseline visual acuity above that explained by other known important variables, nor predicts changes in macular thickness or visual acuity after laser photocoagulation (20). It is possible that other infliximab-related changes may account for our findings. For example, local TNF neutralisation by infliximab could have exerted a beneficial effect on photoreceptors function, explaining in part the improvement in BCVA despite the persistence of macular edema in patients throughout our study. Interestingly, as shown in Figure 2, the photoreceptor inner/outer segment (IS/OS) line, which was invisible at baseline or after the placebo treatment, partially reappeared after infliximab treatment. Whether such changes underlie the infliximab-induced BCVA improvement remains to be seen, since the photoreceptor IS/OS junction line was not identifiable by OCT at any time in all other patients.
The key safety considerations which emerged during the first years of clinical use of infliximab included infections, autoimmune disease, demyelinating disease, malignancies and congestive heart failure (8). Overall rates of these conditions in randomised controlled trials were not significantly increased during treatment compared with placebo. Postmarketing surveillance data in thousands of patients have clearly shown that the safety profile of infliximab is excellent, providing that it is not used to treat patients with active infection, malignancy, pre-existing demyelinating conditions, and heart failure, and that precautions are taken for reactivation of latent tuberculosis. No other particular safety signals in patients with diabetes have emerged (8). Overall, infliximab was well tolerated in our study.

To conclude, a short-term treatment with infliximab significantly improved BCVA in eyes with advanced-stage sight-threatening DME refractory to standard treatment, further suggesting an important role for TNF-mediated pathogenetic mechanisms in this condition. This positive result also suggests that larger and longer term placebo-controlled trials are warranted to assess the efficacy and safety of systemic TNF blockade and/or of local delivery of anti-TNF antibodies by intravitreal injection (21-24) for the primary treatment of DME.

ACKNOWLEDGEMENTS
There are no potential conflicts of interest relevant to this article.

REFERENCES
Infliximab for diabetic macular edema

Table 1-Demographic and disease characteristics of studied patients with DME and individual BCVA values of eligible eyes at baseline (week -2), end of study treatment 1 (week 16) and end of study treatment 2 (week 32)

<table>
<thead>
<tr>
<th>Patient's gender, age (years), diabetes type, years of diabetes, A1C (%)</th>
<th>Eye</th>
<th>Number of previous laser treatments, months since last session</th>
<th>Treatment*</th>
<th>Period°</th>
<th>BCVA baseline</th>
<th>BCVA</th>
<th>BCVA Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, 40, 1, 4, 6.9</td>
<td>01</td>
<td>2, 7</td>
<td>A</td>
<td>1</td>
<td>33</td>
<td>40</td>
<td>21.2%</td>
</tr>
<tr>
<td>M, 67, 2, 27, 7.1</td>
<td>02</td>
<td>0</td>
<td>A</td>
<td>1</td>
<td>40</td>
<td>34</td>
<td>-15.0%</td>
</tr>
<tr>
<td>F, 71, 2, 20, 7.0</td>
<td>03</td>
<td>3, 13</td>
<td>A</td>
<td>1</td>
<td>29</td>
<td>34</td>
<td>17.2%</td>
</tr>
<tr>
<td>F, 56, 2, 19, 6.9</td>
<td>04</td>
<td>4, 6</td>
<td>A</td>
<td>1</td>
<td>28</td>
<td>10</td>
<td>-64.3%</td>
</tr>
<tr>
<td>M, 64, 2, 4, 5.5</td>
<td>05</td>
<td>4, 6</td>
<td>A</td>
<td>1</td>
<td>28</td>
<td>26</td>
<td>-7.1%</td>
</tr>
<tr>
<td>M, 73, 2, 18, 9.3</td>
<td>06</td>
<td>0</td>
<td>A</td>
<td>1</td>
<td>27</td>
<td>28</td>
<td>3.7%</td>
</tr>
<tr>
<td>F, 63, 2, 19, 7.9</td>
<td>07</td>
<td>2, 12</td>
<td>B</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>50.0%</td>
</tr>
<tr>
<td>F, 40, 2, 3, 5.4</td>
<td>08</td>
<td>2, 8</td>
<td>B</td>
<td>1</td>
<td>10</td>
<td>12</td>
<td>20.0%</td>
</tr>
<tr>
<td>F, 57, 2, 10, 5.6</td>
<td>09</td>
<td>2, 9</td>
<td>B</td>
<td>1</td>
<td>12</td>
<td>15</td>
<td>25.0%</td>
</tr>
<tr>
<td>M, 71, 2, 11, 8.3</td>
<td>10</td>
<td>2, 6</td>
<td>B</td>
<td>1</td>
<td>28</td>
<td>31</td>
<td>10.7%</td>
</tr>
<tr>
<td>M, 73, 2, 27, 6.8</td>
<td>11</td>
<td>2, 9</td>
<td>B</td>
<td>1</td>
<td>24</td>
<td>39</td>
<td>62.5%</td>
</tr>
<tr>
<td>M, 67, 2, 27, 7.1</td>
<td>12</td>
<td>8, 14</td>
<td>B</td>
<td>1</td>
<td>25</td>
<td>40</td>
<td>60.0%</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>40</td>
<td>33</td>
<td>-17.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M, 73, 2, 27, 6.8</td>
<td>14</td>
<td>3, 10</td>
<td>B</td>
<td>1</td>
<td>33</td>
<td>45</td>
<td>36.4%</td>
</tr>
</tbody>
</table>

*M: male, F: female. ^A denotes placebo, B denotes infliximab
°study treatment 1: from baseline to week 16; study treatment 2: from week 16 to week 32
Infliximab for diabetic macular edema

Table 2—Changes from baseline to 32 weeks in BCVA, DME and retinopathy status after infliximab, given either during study treatment 1 (eyes # 01-05) or study treatment 2 (eyes # 07-14)

<table>
<thead>
<tr>
<th>Eye #</th>
<th>Difference in letters read (%BCVA change)</th>
<th>% DME thickness change</th>
<th>fundus photographs *</th>
<th>fluoroangiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>+13 (42)</td>
<td>-30</td>
<td>35 to 35</td>
<td>worst</td>
</tr>
<tr>
<td>02</td>
<td>0, (0)</td>
<td>-7</td>
<td>35 to 35</td>
<td>stable</td>
</tr>
<tr>
<td>03</td>
<td>+6 (21)</td>
<td>15</td>
<td>20 to 35</td>
<td>stable</td>
</tr>
<tr>
<td>04</td>
<td>-9 (-39)</td>
<td>-7</td>
<td>53 to 53</td>
<td>stable</td>
</tr>
<tr>
<td>05</td>
<td>+10 (36)</td>
<td>-14</td>
<td>43 to 43</td>
<td>stable</td>
</tr>
<tr>
<td>07</td>
<td>-1 (-4)</td>
<td>16</td>
<td>35 to 20</td>
<td>improved</td>
</tr>
<tr>
<td>08</td>
<td>+7 (117)</td>
<td>-45</td>
<td>53 to 53</td>
<td>stable</td>
</tr>
<tr>
<td>09</td>
<td>+5 (50)</td>
<td>6</td>
<td>47 to 47</td>
<td>stable</td>
</tr>
<tr>
<td>10</td>
<td>+14 (50)</td>
<td>-20</td>
<td>43 to 35</td>
<td>improved</td>
</tr>
<tr>
<td>11</td>
<td>+14 (67)</td>
<td>-15</td>
<td>35 to 35</td>
<td>improved</td>
</tr>
<tr>
<td>12</td>
<td>+8 (32)</td>
<td>6</td>
<td>53 to 43</td>
<td>worst</td>
</tr>
<tr>
<td>13</td>
<td>+4 (11)</td>
<td>-2</td>
<td>35 to 47</td>
<td>worst</td>
</tr>
<tr>
<td>14</td>
<td>+10 (30)</td>
<td>20</td>
<td>35 to 20</td>
<td>improved</td>
</tr>
</tbody>
</table>

* Grading according to the Early Treatment of Diabetic Retinopathy Study (ETDRS) protocol as, 20: macular edema only; 35, 43, 47 and 53: mild, moderate, moderately severe and severe nonproliferative diabetic retinopathy, respectively

Figure legends

Figure 1
Changes in visual acuity measured by the number of letters which a patient was able to read from the Early Treatment Diabetic Retinopathy chart from baseline to study end. Eyes of group A and group B were treated initially with placebo followed by infliximab or vice-versa, respectively (A). The improvement of visual acuity in infliximab-treated eyes is significantly greater by 24.3% compared to placebo-treated eyes, as evaluated by mixed models approach for imbalanced crossover design (B).

Figure 2
Sequential optical coherence tomography images at baseline (A), at completion of placebo treatment (B) and at completion of infliximab treatment (C). The photoreceptor inner/outer segment junction line at the foveola is highly disrupted at week -2 (A, arrow), becomes almost absent at week 16 (B, arrow) and appears partially restored at week 32 (C, arrow).
Infliximab for diabetic macular edema

Fig 1

A

Baseline Week 16 Week 32

VA

Group A Placebo - Infliximab
Group B Infliximab - Placebo

P=0.0167

28.6%

4.3%

% VA Change

Infliximab
Placebo

P=0.0167
Infliximab for diabetic macular edema

Fig 2

A

B
Infliximab for diabetic macular edema