Survival of Simultaneous Pancreas Kidney Transplants

Long Term Pancreas Allograft Survival in Simultaneous Pancreas Kidney Transplantation by Era: UNOS Registry Analysis

Survival of Simultaneous Pancreas Kidney Transplants

Kayo Waki, PhD1,2, Paul I. Terasaki, PhD1, Takashi Kadowaki, PhD2

1. Terasaki Foundation Laboratory, Los Angeles CA, USA 90064
2. Graduate School of Medicine, the University of Tokyo, Department of Metabolic Diseases, Tokyo Japan, 113-8655

Corresponding author:
Kayo Waki
Email address: kwaki@terasakilab.org

Submitted 8 January 2010 and accepted 27 April 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: To determine whether short-term improvement in pancreas graft survival with simultaneous pancreas-kidney (SPK) transplants translated into improved long-term survival, then to examine the implications of that determination.

Research design and methods: We analyzed data for 14,311 diabetic patients who received a first SPK transplant between October 1987 and November 2007, using Kaplan-Meier for graft survival rates and Cox for year-of-transplant effect.

Results: Overall, from 1995 to 2004, 5-year pancreas graft survival stayed about the same (70%-71%). Limiting analysis to grafts that survived more than one year, 5-year survival from 1987 to 2004 ranged from 80% to 84%. With 1987-1989 as reference, the adjusted hazard ratio for graft failure by year of transplant increased to 1.49 (95%, CI 0.97-2.30) in 2000-2004

Conclusions: Long-term pancreas graft survival has remained unchanged despite dramatic decreases in technical failures and early acute rejection rates that contributed to prolonged SPK graft survival.
Simultaneous pancreas-kidney transplants account for over 78% of current pancreas allografts (1-3). Expectations for SPK started high, especially when technical and immunosuppressive advances yielded marked improvements in 1-year and 3-year graft survival through 2004, as shown on the International Pancreas Transplant Registry (IPTR) website and by previous studies (2-6). But the focus of these studies, like clinical focus, has been on such relatively short-term survival. The question remains: has that translated into improved long-term—5-year-plus—SPK pancreas graft survival? This study’s objective was to determine the answer, then examine its implications. We also examined causes of chronic pancreas graft dysfunction and other factors that may influence evaluation of SPK as therapy for diabetes.

RESEARCH DESIGN AND METHODS

We analyzed data collected by the United Network for Organ Sharing (UNOS) for 14,311 diabetic patients who received a first SPK transplant between October 1987 and November 2007, including follow-up through November 2007. Patients (n=147) whose follow-up data was missing were excluded.

Baseline characteristics were compared using the Kruskal-Wallis test for continuous variables, chi-square test for categorical variables, Kaplan-Meier methods and log-rank tests to calculate and compare pancreas graft survival rates, and Cox proportional hazard models to estimate year-of-transplant effect—adjusted for potential confounding factors of donor/recipient demographics, duct management, venous management, preservation time, and number of HLA mismatches. Patients were grouped by date of transplant into five eras: 1987-1989, 1990-1994, 1995-1999, 2000-2004 and 2005-2007. Pancreas graft survival was calculated for the full data set, then—to minimize effects of first-year technical failure and acute rejection—recalculated for grafts surviving over one year. We used STATA version 9.0 (Stata, College Station, Texas) for all statistical analyses.

RESULTS

Compared with other era’s recipients, those in 2005-2007 were more likely older (41.5±8.4 years vs. 34.8±6.6 years in 1987-1989, p<0.001), male (63.7% vs. 58.0% in 1987-1989, p=0.003), less likely to be white (73.1% vs. 95.1% in 1987-1989, p<0.001), had more donor-recipient HLA mismatches (4.5±1.2 vs. 4.2±1.2 in 1987-1989, p<0.001) and had younger donors (25.9±10.3 years vs. 27.2±1.3 years in 1987-1989, p<0.001).

Although SPK pancreas graft survival improved significantly between 1987 and 1995, it has not improved since 1995 (Fig. 1a). These rates were similarly high among recipients transplanted in the eras 1995-1999, 2000-2004 and 2005-2007. Limiting analysis to grafts surviving over one year, 5-year SPK survival rates after 1990 were almost identical in the different eras (Fig. 1b), and SPK offered much better survival than Pancreas After Kidney (PAK) and Pancreas Transplant Alone (PTA): for SPK, 10- and 15-year survival was 62% and 40%, respectively, only 36% and 11% for PAK, 32% and 18% for PTA (3).

Looking only at grafts surviving over one year—and after considering potential confounders—there was a mild risk association (slight increase in graft-loss rate) for recent-era transplants compared with those in 1987-1989. By year of transplant, adjusted hazard ratio for overall loss of grafts surviving over one year in eras 1990-1994, 1995-1999, 2000-2004 and 2005-2007 was 34.
Survival of Simultaneous Pancreas Kidney Transplants

1.20 (95% CI, 1.03-1.41), 1.17 (0.99-1.39), 1.26 (1.04-1.54), and 1.49 (0.97-2.30), respectively.

During the first year, post-transplant, technical failures caused 66% of graft losses. As post-transplant time progressed, chronic rejection quickly replaced technical failure as the major cause of graft loss. Between 1-10 years, chronic rejection caused 50% of graft losses, 54% after 10 years.

Conclusions

After 1990, graft survival rates were strikingly similar during this study’s different eras. Pancreas survival showed no long-term improvement, and risk of failure for grafts surviving over one year increased slightly for recent transplants.

SPK transplantation and pancreas transplantation in general may be undergoing clinical re-evaluation. According to the Organ Procurement and Transplantation Network (OPTN), the total number of SPK/PAK/PTA procedures has declined each year from 1,484 in 2004 to 1,233 reported so far for 2009. With some fluctuations, SPK transplants have declined from 915 in 2000 (a spike of 924 in 2006) to 854 (so far) in 2009 (1).

Yet SPK offers distinct quality-of-life (QOL) benefits: freedom from self-administered insulin, more stable blood sugar levels and no risk of hypoglycemia (7-9). Furthermore, right now there seems to be no realistic alternative that affords the same QOL as SPK for type 1 diabetic patients with end-stage renal disease. Survival is comparable for living-donor kidney (LDK) transplants and SPK transplants (10), but kidneys, alone, offer diabetics only marginal QOL improvement in freedom from insulin injection or having more stable glycemic control; and the supply of LDKs is still limited.

The one-year-survived chronic pancreas graft failure rate at 10 and 15 years was lowest with SPK (28% and 60%, respectively) compared with PAK (64% and 89%), and PTA (68% and 82%) (3)—an important consideration because monitoring of function or biopsy of an SPK kidney may also provide warning of possible pancreas graft chronic rejection early enough for more timely and effective intervention, a benefit not obtained with PAK or, obviously, PTA (11). This predictive feature of SPK is slightly compromised because, although—excluding first-year graft failures—5-year pancreas and kidney survivals were comparable (84% and 83%, respectively), 10-year survival was 63% (pancreas) and 59% (kidney) (3). Nevertheless, early warning should, intuitively, result in improved long-term graft survival. The reason it has not is because, as of now, there is no established, even remotely definitive treatment for chronic rejection—which, as we have shown above, is the major long-term cause of graft dysfunction and loss.

That leads to the real implication of our study’s new finding. There will evidently be no “natural” improvement in long-term pancreas graft survival as that might be expected after such great short-term improvement. So the next step must be the same level of concentration on elucidating the mechanism of chronic rejection and developing effective therapy for it as there was for reducing short-term graft loss.

Meanwhile, the clinical decision as to whether the undoubted QOL benefits and predictive feature of SPK offset any contraindications should be weighed for each patient, individually, with this new knowledge that, right now, long-term survival has not improved constituting one more factor to be weighed.

ACKNOWLEDGEMENTS

The data reported here were supplied by UNOS. The content is the responsibility of the authors and does not reflect the views or policies of the Department of Health and
Human Services. The study was funded by Terasaki Foundation Laboratory. There are no conflicts of interest. K.W. researched data, wrote the manuscript; P.T. contributed to the discussion, reviewed manuscript; T.K. contributed to the discussion, reviewed manuscript.

REFERENCES
1. http://www.unos.org/Data/, accessed on March 16th, 2010
5. Gruessner AC, Sutherland DE: Pancreas transplant outcomes for United States (US) and non-US cases as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR) as of June 2004. Clin Transplant 19:433-455, 2005

Figure legend
Figure 1a. Pancreas graft survival by era for all transplants, 1987-2007: UNOS registry analysis.
Figure 1b. Pancreas graft survival by era for transplants surviving more than one year, 1987-2007: UNOS registry analysis
Survival of Simultaneous Pancreas Kidney Transplants

Waki. et al. Figure 1