Increases in waist circumference and weight as predictors of type 2 diabetes in individuals with impaired fasting glucose: influence of baseline BMI
Data from the D.E.S.I.R. Study

Running title: Waist and weight increases predict incident diabetes

ALAIN GAUTIER, MD1; RONAN ROUSSEL, MD, PHD2; PIERRE HENRI. DUCLUZEAU3 MD, PHD; CELINE LANGE, MSC4,5; SYLVIANE VOL, MSC6; BEVERLEY BALKAU, PHD4,5; FABRICE BONNET, MD, PHD1 for the D.E.S.I.R. Study Group6*

*Members of The D.E.S.I.R. Study Group are listed in the online appendix at http://care.diabetesjournals.org.

1 Service Endocrinologie, Center Hospitalier Universitaire de Rennes, Université Rennes1, Hôpital Sud, 16 boulevard de Bulgarie, 35203 Rennes, France; Inserm U625, Rennes, France

2 Université Paris–Diderot, Paris 7; Département d’Endocrinologie, Diabétologie et Nutrition, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, 46 r Henri Huchard 75018 PARIS; Inserm U695, Paris, France;

3 Service d’Endocrinologie-Diabétologie-Nutrition, Centre Hospitalier Universitaire d’Angers, Université d’Angers, 4 r Larrey 49933 ANGERS, France

4 Inserm, CESP Center for Research in Epidemiology and Health of Populations, U1018, Epidemiology of diabetes, obesity and chronic kidney disease over the life course, INSERM, 16 avenue Paul Vaillant Couturier 94807 Villejuif, France

5 Université Paris-Sud 11, UMRS 1018, Villejuif, France

6 Institut inter Régional pour la Sante, 45 rue de la Parmentière 37521 La Riche, France

Corresponding author:
F. Bonnet
E-mail: fabrice.bonnet@chu-rennes.fr

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

Submitted 24 February 2010 and accepted 3 May 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Waist and weight increases predict incident diabetes

Objective—To evaluate in impaired fasting glucose (IFG), the relative importance of increases in waist circumference and weight on progression to type 2 diabetes.

Research design and methods—The 9-year incidence of diabetes was studied in 979 men and women with baseline IFG, from the D.E.S.I.R. cohort.

Results—Increases in both waist circumference and weight were significantly associated with diabetes incidence, standardized ORs (95% CI): 1.79 (1.45-2.21) and 1.86 (1.51-2.30) respectively, after controlling for baseline risk factors. The impact of waist circumference increase was greater for BMI<25 kg/m²: 2.40 (1.63-3.52) than for BMI≥25 kg/m²: 1.66 (1.28-2.16) and persisted after adjusting for concurrent changes in either insulinemia or the HOMA2-IR index. Weight change had a similar impact in both BMI groups.

Conclusions—In IFG individuals, it is important to monitor and prevent increases in waist circumference, in particular for those with BMI<25 kg/m².
Individuals with impaired fasting glucose (IFG) are at high risk for type 2 diabetes (1,2). Although visceral adiposity and waist circumference are strong risk factors for type 2 diabetes (3), the consequence of an increase in waist circumference among individuals with IFG at baseline has not been fully investigated, in particular in those who are not overweight or obese at baseline (4,5).

This report investigates the relative importance of increases in waist circumference and weight on progression to diabetes, in individuals with baseline IFG, according to baseline BMI strata.

RESEARCH DESIGN AND METHODS

We studied men and women aged 30 to 64 years, who participated in the cohort: Data from an Epidemiological Study on the Insulin Resistance syndrome (D.E.S.I.R.) and who had IFG at baseline (fasting plasma glucose 5.6-6.9 mmol/l). D.E.S.I.R. is a 9-year follow-up study that aimed to clarify the development of the insulin resistance syndrome and type 2 diabetes (6). All participants signed an informed consent and the protocol was approved by an Ethics Committee.

Incident cases of diabetes had fasting plasma glucose ≥ 7.0 mmol/l or treated diabetes at one of the three yearly follow-up examinations. The average variation per year in waist circumference and weight was defined as the difference between the visit when diabetes was screened and the baseline visit, divided by the number of years of follow-up; 674 men and 305 women were studied.

All analyses used R Version 2.10.0 (Free Software Foundation, Boston, MA, USA) and a two-sided $P<0.05$ was considered statistically significant. HOMA2IR was computed using software downloaded at http://www.dtu.ox.ac.uk. Insulin, glucose and HOMA2-IR values were log-transformed before analysis. We used logistic models for incident diabetes to evaluate standardized ORs with Wald 95% CIs, conditioned on baseline BMI $< \text{and} \geq 25\, \text{kg/m}^2$, adjusted for sex, family history of diabetes, baseline age, current smoking, physical activity, fasting glucose, hypertension (systolic/diastolic blood pressures $\geq 140/90$ mmHg or treated for hypertension). We tested for interactions between baseline BMI categories with increases in waist circumference and weight on incident diabetes.

RESULTS

There were 142 cases of incident diabetes after nine years of follow up. Individuals who became diabetic, had a greater increase over follow-up in both waist circumference and weight than those who did not progress (Supplemental Table 1 in the online appendix available at http://care.diabetesjournals.org). Changes in waist circumference and weight were significantly associated with incident type 2 diabetes in multivariate analysis, in both BMI categories (Table 1). The significant impact of change in either waist circumference or weight did not vary by age at baseline (below or above 50 years).

There was an interaction between BMI category and the effect of waist increase for progression to diabetes, with a larger impact in participants with BMI $<25\, \text{kg/m}^2$ than in those with BMI $\geq 25\, \text{kg/m}^2$ (P for interaction=0.049).

An increase in waist circumference remained significantly associated with progression to type 2 diabetes after controlling for concurrent changes in
Waist and weight increases predict incident diabetes

4

either insulinemia or the HOMA2-IR index, irrespective of baseline BMI category (Table 1). In contrast, the effect of weight change was no longer significant after controlling for variations in either insulinemia or the HOMA2-IR index in those with BMI <25 kg/m².

CONCLUSIONS
The main finding of this study is that an increase in waist circumference is a major risk factor for type 2 diabetes in individuals with IFG, irrespective of baseline BMI. In those with BMI<25 kg/m², an increase in waist appears to be a stronger risk marker for progression to type 2 diabetes than weight gain. This is in agreement with a previous report which found greater risk for diabetes in US men who increased their waist circumference (7); however, these authors did not specifically assess risk in IFG (7).

To our knowledge, this study is the first to assess the impact of waist increase for progression to diabetes in the absence of excessive weight at baseline. Previous studies assessing risk factors for diabetes in either the general population or in IFG subjects, did not perform analyses according to BMI strata (4,5).

Our findings suggest the potential value of monitoring waist circumference over time in IFG. Waist circumference probably reflects more accurately visceral fat in leaner subjects because of the thinner subcutaneous abdominal depot (8). Another explanation may be that individuals with IFG and prone to develop overt diabetes tend to gain visceral fat more selectively than subcutaneous fat, as compared to those who remained non-diabetic. This could be sustained by defects in adipogenesis and/or specificities in adipose tissue morphology, independently of body fat level, as recently suggested (9). However, this hypothesis cannot be demonstrated in the present study.

The effect of an increase in waist circumference on the progression to diabetes was independent, at least partly, of concomitant variations in insulinemia or the HOMA2-IR index, suggesting additional mechanisms linking abdominal adiposity and β-cell function (10).

Impaired β-cell function is considered an important characteristic in individuals with IFG (11) and reduced insulin secretion has been shown to be a prominent mechanism leading to diabetes in lean individuals (12,13). We speculate that an increase in waist circumference may induce further alterations in insulin secretion beyond that inherent in a worsening insulin resistance. Potential mechanisms may involve β-cell lipotoxicity through enhanced free fatty acid release from adipose tissue (14).

Limitations of the present study include the absence of gold-standard measures of insulin sensitivity such as the euglycemic–hyperinsulinemic clamp; strengths are the large cohort with a low prevalence of obesity and a long follow-up.

In conclusion, our results emphasise the importance of monitoring and preventing increases in waist circumference in individuals with IFG, in particular in those with BMI <25 kg/m².

Author contributions. A Gautier and C Lange analyzed the data; F Bonnet and A Gautier wrote the manuscript; R Roussel, PH Ducluzeau, S Vol and B Balkau contributed to the discussion; B Balkau reviewed and edited the manuscript. The D.E.S.I.R. study has been supported by INSERM contracts with CNAMTS, Lilly, Novartis Pharma and Sanofi-Aventis; by INSERM (Réseaux en Santé Publique,
Waist and weight increases predict incident diabetes

Interactions entre les déterminants de la santé, Cohortes Santé TGIR 2008), the Association Diabète Risque Vasculaire, the Fédération Française de Cardiologie, La Fondation de France, ALFEDIAM, ONIVINS, Ardix Medical, Bayer Diagnostics, Becton Dickinson, Cardionics, Merck Santé, Novo Nordisk, Pierre Fabre, Roche, Topcon.

Disclosure. The authors have no conflict of interest in regard to this manuscript.

REFERENCES

Waist and weight increases predict incident diabetes

glucose tolerance to impaired fasting glycemia and impaired glucose tolerance: the Inter99 study. Diabetes Care 2009;32:439-444

Table 1--Odds Ratios (95% confidence intervals) for 9 year incident diabetes, per 1 SD change in waist circumference (WC) and weight in impaired fasting glucose (IFG). The D.E.S.I.R. study.

<table>
<thead>
<tr>
<th></th>
<th>All IFG participants</th>
<th>BMI <25 kg/m²</th>
<th>BMI ≥25 kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=979</td>
<td>n=433</td>
<td>n=546</td>
</tr>
<tr>
<td>Univariate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in WC</td>
<td>1.69 (1.41 - 2.03)</td>
<td>2.48 (1.73 - 3.55)</td>
<td>1.48 (1.20 - 1.84)</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.0003</td>
</tr>
<tr>
<td>Change in weight</td>
<td>1.83 (1.53 - 2.19)</td>
<td>1.86 (1.35 - 2.55)</td>
<td>1.85 (1.48 - 2.32)</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>Model 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in WC</td>
<td>1.79 (1.45 - 2.21)</td>
<td>2.40 (1.63 - 3.52)</td>
<td>1.66 (1.28 - 2.16)</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td><0.0001</td>
<td>0.0002</td>
</tr>
<tr>
<td>Change in weight</td>
<td>1.86 (1.51 - 2.30)</td>
<td>1.92 (1.32 - 2.79)</td>
<td>1.96 (1.50 - 2.55)</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td>0.0006</td>
<td><0.0001</td>
</tr>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in WC</td>
<td>1.65 (1.30 - 2.09)</td>
<td>1.82 (1.21 - 2.75)</td>
<td>1.66 (1.22 - 2.24)</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td>0.004</td>
<td>0.001</td>
</tr>
<tr>
<td>Change in weight</td>
<td>1.67 (1.30 - 2.15)</td>
<td>1.20 (0.77 - 1.88)</td>
<td>1.97 (1.44 - 2.69)</td>
</tr>
<tr>
<td></td>
<td><0.0001</td>
<td>0.4</td>
<td><0.0001</td>
</tr>
<tr>
<td>Model 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change in WC</td>
<td>1.52 (1.18 - 1.96)</td>
<td>1.82 (1.18 - 2.80)</td>
<td>1.49 (1.08 - 2.06)</td>
</tr>
<tr>
<td></td>
<td>0.001</td>
<td>0.007</td>
<td>0.01</td>
</tr>
<tr>
<td>Change in weight</td>
<td>1.48 (1.13 - 1.95)</td>
<td>1.04 (0.64 - 1.70)</td>
<td>1.79 (1.29 - 2.50)</td>
</tr>
<tr>
<td></td>
<td>0.005</td>
<td>0.9</td>
<td>0.0006</td>
</tr>
</tbody>
</table>

Model 1 = adjusted for sex, family history of diabetes and baseline age, current smoking, physical activity, fasting glucose, hypertension
Model 2 = Model 1 + change in fasting insulinemia
Model 3 = Model 1 + change in HOMA2-IR
* standard deviations for the standardization of the odds ratios in: All IFG participants, BMI <25 kg/m² and BMI ≥25 kg/m² groups were respectively: for change in waist circumference 0.74, 0.82 cm/year, and for change in weight 0.62 and 0.77 kg/year