Cross-sectional study of periodontal care and glycosylated hemoglobin in an insured population

Running Title: Association between GHb and periodontitis

Leslie Spangler,¹ PhD, VMD
Robert J Reid,¹ MD, PhD
Ronald Inge,² DDS
Katherine M Newton,¹ PhD
Philippe Hujoel,³ DDS, MSD, PhD
Monica Chaudhari,² MS
Robert J. Genco,⁴ DDS, PhD
William E Barlow,⁵ PhD

1. Group Health Research Institute, Seattle, WA 98101, United States
2. Washington Dental Service, Seattle, WA, 98115, United States
3. School of Dentistry, University of Washington, Seattle, WA, 98195 United States
4. Department of Oral Biology, University at Buffalo, NY, 14228 United States
5. Cancer Research and Biostatistics, Seattle, WA, 98101, United States

Corresponding author:
Leslie Spangler, VMD, PhD
Email: spangler.l@ghc.org

Submitted 30 July 2009 and accepted 18 May 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: Compare GHb among people with diabetes who have and have not received periodontal care.

Methods: This cross-sectional study linked 5 years of electronic medical record and dental insurance data for dually insured patients with diabetes, ages 40-70 (n=5,103). We assessed the association between annual mean GHb (%) and periodontal care (a proxy for periodontitis) defined using claim codes. Among patients who received periodontal care we assessed the association between GHb and periodontal treatment intensity. We determined associations using linear regression adjusted for potential confounders and tested for effect modification by age, sex, insulin use, diabetes severity, BMI, and smoking.

Results: Mean GHb was 7.66%; 38% of participants received periodontal care during the five years. After multivariate adjustment, patients who received periodontal care had GHb 0.08 percentage point higher than patients who did not (P = 0.02). In stratified analyses, the association was present for women (0.18 percentage points higher GHb with periodontal care, P <0.001) but not significant for men (0.008 percentage points lower, P = 0.86). In patients who received periodontal care, those with 1, and with 2 or more, surgical treatments had GHb 0.25 (P=0.04) and 0.36 (P=0.002) percentage points lower, respectively, than patients without periodontal surgeries.

Conclusions: This population-based, cross-sectional study showed small associations between periodontal care (a proxy for periodontitis) and higher GHb. Well controlled longitudinal studies or clinical trials are needed to evaluate causality and temporal trends. Sub-analyses suggest that further investigation of this association among women, and by intensity of periodontal treatment, may be of interest.
A n estimated 23.6 million Americans have diabetes, and the prevalence is increasing. Periodontal disease may have a systemic effect that could worsen glycemic control. Reports have linked periodontitis to higher plasma levels of C-reactive protein (CRP) (1), interleukin-6 (IL-6) (2), and tumor necrosing factor-alpha (TNF-α)(2); these factors have been associated with insulin resistance, potentially worsening glycemic control (3,4). Some investigators suggest this association may be due to confounding by shared causal factors such as an unhealthy diet or smoking (5,6).

Observational studies have assessed the association between periodontal disease and GHb in patients with type 2 diabetes. Most (7-13) but not all (14), suggest an association with higher GHb. These studies were typically small and often performed in patient groups subject to selection biases. The impact of periodontal treatment on glycemic control is controversial, with two meta-analyses reporting conflicting results (15,16), reflecting the biases that may plague these small studies.

We sought to examine these associations in a large, population-based, cross-sectional study. Our primary hypothesis was that GHb levels would be higher in participants with claims for periodontal care (a proxy for periodontitis). A secondary hypothesis was that, in patients who received periodontal care, GHb levels would be lower in patients who received higher intensity treatment.

DESIGN AND METHODS:
Data were extracted from automated dental and medical databases. Instead of the usual 1-year study period, we used 5 years, to ensure adequate time for participants to receive both dental and medical care. Figure 1 shows the inclusion and exclusion criteria. We used four identifiers to link medical and dental data for persons aged 40-70 years who were continuously insured from 2002-2006 by both the Washington Dental Service (a dental insurer) and Group Health Cooperative (an integrated health care system) in Washington state. These procedures are described elsewhere (17).

Diabetes was defined as: two fasting glucoses \(\geq 126 \text{ mg/dl} \), two non-fasting glucoses \(\geq 200 \text{ mg/dl} \), or one of each within 12 months; GHb \(\geq 7.0\% \); any filled prescription for insulin or oral diabetic agents; or one inpatient or two outpatient diabetes diagnoses. We excluded patients with gestational and secondary diabetes (18). The population with diabetes included both types 1 and 2 diabetes; but, given age-specific prevalence, most probably have type 2 diabetes (18). Group Health’s institutional review board approved all procedures.

Our exposure variable, periodontal care, was defined by identifying any dental claim submitted with at least one Current Dental Terminology (CDT) periodontal procedure code during the 5-year study period. The CDT codes taken as evidence of periodontal disease included periodontal maintenance (D4910), gingival (D4240, D4241) and apically (D4245) positioned flaps, osseous surgery (D4260, D4261), bone replacement graft (D4263, D4264), tissue regeneration with biologic materials (D4265), guided tissue regeneration (D4266, D4267), periodontal scaling/root planing (D4341, D4342, D4345), full mouth debridement (D4355), and...
localized antimicrobial delivery (D4381). Periodontal treatment intensity was defined by two variables: (1) the occurrence and frequency of periodontal surgeries (D4240, D4241, D4245, D4260, D4261, D4263, D4264, D4265, D4266, D4267) (0, 1, ≥ 2); and (2) an indicator (0/1) of whether the total number of non-surgical periodontal claims (D4342, D4345, D4355, D4381, D4910) was above the median (7). These exposure variables were assigned once during the 5-year period.

Potential confounders, extracted from the medical databases, included age, sex, and medical insurance type in 2002. Smoking status, routinely collected at medical visits, was defined as non-smoker if clinical staff recorded patients as non-smokers on 90% or more of their visits during the 5-year period, continuous smokers if more than 90% of visits were labeled as smoking, and intermittent smokers for the remainder. BMI recorded during clinical visits was calculated using the median of the first 3 measurements during the 5-year period and categorized (≤24.9, 25-29.9, 30-39.9, and 40+). To control for potential utilization biases, we included markers of medical care use [number of primary care/urgent visits (square root), number of specialty visits (square root), number of emergency visits (0, 1, ≥ 2), and the number of GHb tests performed], and surrogate markers of preventive healthcare seeking behaviors [number of preventive (well-care) visits (square root) and number of retinal eye exams (square root)]. We used RxRisk scores to control for chronic disease comorbidity at the beginning of the study (2002). This score is based on an individual’s age, sex, insurance status, and chronic condition profile measured by outpatient pharmacy dispensing. Using pharmacy records, we classified diabetes treatment intensity during the 5-year period as “no diabetes medications”, “oral hypoglycemic only”, and “any use of insulin”. We quantified diabetes severity using the 11-point Diabetes Complication Severity Index (DCSI) (0, 1, 1+) (20).

We used Pearson chi² for categorical variables and analysis-of-variance F-tests for continuous variables to test differences in percentages and means of population characteristics by periodontal care status.

The outcome variable, mean GHb (%), was calculated for each study year. While the distribution of annual mean GHb (%) was right skewed, log transformation yielded similar results and we elected to use the untransformed mean to ease interpretation. Since, an individual can have up to five annual GHb means (2002-2006) we used generalized estimating equations (GEE) with an independence working correlation to account for within person correlation. Some covariates had extremely high values so were either categorized or square-root transformed to reduce their influence on the overall fit. Linear regression models with robust standard errors (regress command in STATA release 10) were used to model annual mean GHb as a function of single measures of periodontal care and periodontal treatment intensity within the 5-year period.

Our models were developed by first including age and sex and then testing the effect of additional covariates. All variables potentially related to GHb were then included to establish their association. Non-significant variables were removed one at a time (in decreasing p-value order) until only significant variables remained. BMI and the exposure variables were included. Violations of the regression assumptions
were checked in the final model using a residual-versus-fitted plot. Variance inflation factors were assessed to check for the presence of multicollinearity.

In exploratory multivariate analysis, we tested for interactions, separately, between periodontal care and each of the following variables: diabetes complication severity; age (40-49 or 50-70); sex; any insulin use (2002-2006); BMI; and smoking status (2002-2006). We tested for effect modification by BMI and smoking based on the hypothesis that inflammation associated with obesity or smoking may obscure the association between periodontitis and glycemic control. We hypothesized that the association between periodontitis and glycemic control may differ by diabetes severity (treatment, complication) because glycemic control in more advanced disease may resistant influence. We stratified by age based on findings from a previous study (13).

RESULTS
During the study period (2002-2006), the mean GHB for our dual-insured population with diabetes (n=5,103) was 7.66%, the average age was 55, and 38% received periodontal care (Table 1). Compared to participants without periodontal care, those with periodontal care were younger, used ambulatory services less, and were more likely to smoke, have lower BMI, and be men, or on government-based insurance.

As hypothesized, multivariate analyses linked periodontal care (a proxy for periodontitis) with higher GHB levels. In the unadjusted model, annual mean GHB was 0.11 percentage points higher for people with diabetes who received periodontal care than for those receiving no periodontal care (P = 0.005) (Table 2). The magnitude of the association decreased but remained statistically significant after controlling for age, BMI, and sex (GHB 0.09 percentage points higher; P = 0.02) as well as other variables related to diabetes control, including comorbidity, smoking, medical utilization (primary care visits, specialty care visits, and GHB tests), and number of preventive well-care visits (0.08 percentage points higher; P = 0.04). The association was independent of diabetes severity (DCIS) (0.08 percentage points higher; P = 0.02).

The periodontitis-GHB association was similar within categories of smoking status, BMI, and insulin use. However, the magnitude of the association appeared greater in women than men (interaction term P = 0.002) (Table 3). There was also some suggestion that the magnitude of the association may be greater at younger ages (40-49 years old).

Among diabetic patients with periodontal care (n=1,950), 44% received more than seven non-surgical periodontal services including periodontal maintenance, local antimicrobials and other non-surgical treatments. Surgical care was relatively uncommon; 93% had no periodontal surgeries, 4% had one, and 3% had two or more. As hypothesized, among those with periodontal care, those who received greater treatment intensity had lower GHB levels. In the adjusted model, people with more than the median number (7) of non-surgical visits had GHB 0.13 percentage points lower than those with 7 or fewer non-surgical visits (95% CI -0.24 to -0.03; P = 0.01). Compared to people with no periodontal surgeries, those with 1 and 2 or more surgeries had GHB levels that were 0.25 (95% CI -0.49 to -0.01; P=0.04) and 0.36 (95% CI -0.58 to -0.13; P=0.002) percentage points lower respectively. Similar findings were
observed in analyses limited to non-smokers. Among non-smokers, people with more than the median number (7) of non-surgical visits had GHB 0.14 percentage points lower than those with fewer visits (P = 0.02). Compared to people with no periodontal surgeries, those with 1 and 2 or more surgeries had GHB levels that were 0.26 (P=0.05) and 0.29 (P=0.006) percentage points lower respectively.

CONCLUSIONS
In our cross-sectional study of 5,103 patients with diabetes, we observed a small association between higher GHB and receipt of any periodontal care provided by community dentists or periodontists, after accounting for confounders. The association between periodontal care and glycemic control can reflect either periodontitis itself or treatment for the disease. Treatment for periodontitis could worsen certain markers of glycemic control possibly linked to short-term increase of inflammatory markers (21) or due to the increase in fasting plasma glucose that may happen upon resolution of certain infections. If periodontal care is a marker of periodontitis, our primary hypothesis, our results are consistent with a small body of observational evidence linking periodontitis and poor glycemic control in adjusted analyses. A Swedish population-based study of 179 participants with type 2 diabetes reported a 0.6% difference in GHB between patients with and without periodontitis defined by the percentage of teeth with 30% bone loss (9). One multivariate analysis found an association between GHB and probing depth but not attachment loss (11) while another linked GHB to attachment loss but not to probing depth (14). In a cohort study of 88 participants of Pima ancestry with type 2 diabetes, attachment loss was associated with a six fold increase (95% CI 1.5 to 25) in the odds of GHB ≥ 9% after 2 years of follow-up (13). These smaller studies found stronger associations between periodontitis and GHB than we found between periodontal care and GHB. This difference may relate to our use of periodontal care as a marker of periodontitis. However, we believe this assumption is reasonable for several reasons: 1) all participants were examined by a dentist; 2) in our prior validation analysis, the positive predictive value, sensitivity and specificity were 84%, 80%, and 44%, respectively, when the periodontal care code set was compared to chart probing depth of ≥ 5 mm on 2+ teeth in a subset with periodontal charts (22); 3) the proportion of patients receiving periodontal care in our study (38%) resembles the Centers for Disease Control and Prevention (CDC) estimate of 30% of people with diabetes having severe periodontal diseases;(23) and 4) when periodontal codes were categorized by intensity and evaluated in patients who received periodontal care we saw slightly lower GHB among those who received higher treatment intensity. However, we could not identify people with periodontitis who did not receive periodontal care. This misclassification would have biased our results towards the null. The smaller difference in GHB levels between those with and without periodontal care in our study may have been due to our ability to adjust more completely for important confounders. Our analyses adjusted for covariates that captured medical care utilization and preventive health behaviors, variables not included in other studies. However, we could not control for some adjusters used
in other studies, including antibiotic use, number of teeth, race, socioeconomic status, and use of non-steroidal anti-inflammatory medications. Although we could not control for these covariates, our analysis may have partially accounted for them, since: our cohort was primarily Caucasian (~75%); most, due to local policy, were using statins, which have anti-inflammatory effects; and the population was dual medical/dental insured, which may reduce differences in socioeconomic status. No study, including our own, has controlled for nutritional status beyond BMI. If poor nutrition is associated with both increased periodontal care (as a marker for periodontitis) and increased GHb, our inability to control for potential confounding by nutritional status could bias our results toward finding an association when none exists. Our stratified analysis suggested that the magnitude of the association between periodontal care and GHb may be greater in younger diabetics (age 40-49); these results must be interpreted cautiously given the 0.10 significance of the interaction term. The study of people of Pima ancestry who had diabetes reported a similar finding. When periodontitis was defined based on bone loss, the association with GHb was observed only in patients age ≤35 or younger. However, since we could not control for number of teeth, another explanation is that we are not capturing periodontitis as well in older adults who tend to need less periodontal treatment because they have lost more teeth.

In an exploratory analysis we observed a higher magnitude of association between periodontal care and GHb level in women than in men. We may have less measurement error in GHb in women due to their higher health care use. Women, compared to men, had slightly higher mean number of GHb tests performed during the 5-years (7.9 vs. 7.5). Men and women did not differ in baseline or 5-year mean GHb levels, diabetes treatment intensity, or diabetes complication severity index. This finding is intriguing because some literature links increases in proinflammatory cytokines with declining estrogen in menopause (24), whose average age is 51 years, close to our female population's average age of 54 years. Assuming similar measurement error and increased generalized inflammatory burden with each decade of women’s age, we might expect to see a lower magnitude of association with increasing age, which our data suggested (age 40-49, 0.35 percentage points higher; age 50-59, 0.14 higher; age 60-70, 0.09 higher), however the p-value for the interaction term was not significant (P=0.19). Additionally, a recent study, which used survey data and evaluated temporal sequence, reported a stronger association between periodontal disease and incident diabetes in women versus men (25). Our finding needs further corroboration.

In participants with diabetes who received periodontal care, we observed lower GHb with greater intensity of periodontal treatment but the magnitude of this association was small. These results are consistent with a recent meta-analysis of nine small randomized controlled trials (485 individuals) supporting the idea that periodontal treatment improves glycemic control (15). An earlier meta-analysis of 10 intervention studies reported a significant increase in HbA1c (16). The relatively small magnitude of the association in our study may be due to our use of dental claims and the fact that all patients in this group received at least some periodontal care. Our measure of periodontal
treatment intensity may have non-differential measurement error, since it
does not precisely measure the scope or
type of treatment, which could bias our
results. Or, the smaller effect may reflect
differences in effectiveness of periodontal
treatment delivered in experimental trials
compared to periodontal care provided in
the community.
Limitations are inherent to our study’s
design. As a cross-sectional study, it
cannot establish causality or temporality.
In addition, since this study is
observational, residual confounding may
explain the minimal difference in GHb
between people with diabetes who did
and did not receive periodontal care.
However, this study does support using
linked populations from medical and
dental providers and the associated
automated data to expand research on
the association between oral health and
other medical conditions.
This analysis showed a small association
between periodontal care (a marker of
periodontitis) and higher GHb. The sub-
analyses suggest further investigation of
this association within women and by
intensity of periodontal treatment may be
of interest.

Author Contributions: The authors have
made substantial contributions to the
following areas of the manuscript;
researched data (LS, RJR, RI, KMN),
contributed to discussion (LS, RJR, RI,
KMN, PH, MC, RJG, WEB) wrote
manuscript (LS), reviewed/edited
manuscript (LS, RJR, RI, KMN, PH, MC,
RJG, WEB).

ACKNOWLEDGMENTS
Washington Dental Service and Group
Health Cooperative, employers of five of
our co-authors, funded this study. All
other authors have no relevant conflict of
interest to disclose. Preliminary finding of
this study were presented at the 2009
American Diabetes Association 69th
Scientific Session.

Funding Source: Washington Dental
Service and Group Health Cooperative.

REFERENCES
1. Loos BG: Systemic markers of inflammation in periodontitis. *J Periodontol* 76:2106-
15, 2005
2. Bretz WA, Weyant RJ, Corby PM, Ren D, Weissfeld L, Kritchevsky SB, Harris T,
Kurella M, Satterfield S, Visser M and Newman AB: Systemic inflammatory markers,
periodontal diseases, and periodontal infections in an elderly population. *J Am Geriatr
Soc* 53:1532-7, 2005
3. Festa A, D’Agostino RJ, Howard G, Mykkanen L, Tracy RP and Haffner SM: Chronic
subclinical inflammation as part of the insulin resistance syndrome: the Insulin
4. Donahue RP and Wu T: Insulin resistance and periodontal disease: an epidemiologic
5. Willi C, Bodenmann P, Ghali WA, Faris PD and Cornuz J: Active smoking and the
risk of type 2 diabetes: a systematic review and meta-analysis. *JAMA* 298:2654-64,
2007
502, 2009

25. Demmer RT, Jacobs DR, Jr. and Desvarieux M: Periodontal Disease and Incident Type 2 Diabetes Mellitus: Results from the First National Health and Nutrition Examination Survey and its Epidemiologic Follow-up Study. *Diabetes Care*: 1373-9, 2008
Association between GHb and periodontitis

Table 1. Select characteristics by periodontitis status of our analysis sample (n=5,103) of continuously enrolled, diabetic population, age 40-70 years, with medical and dental insurance, and at least one dental and one medical visit during the study years 2002 to 2006.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n=5,103)</th>
<th>No periodontal care (n=3,153)</th>
<th>Periodontal care (n=1,950)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average 5-year GHb % (SD)</td>
<td>7.66 (1.3)</td>
<td>7.62 (1.3)</td>
<td>7.72 (1.4)</td>
<td>0.01</td>
</tr>
<tr>
<td>Average number of GHb tests/5-yrs (SD)</td>
<td>7.56 (4.4)</td>
<td>7.62 (4.4)</td>
<td>7.46 (4.3)</td>
<td>0.19</td>
</tr>
<tr>
<td>Age (Percent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-49 (n= 1,308)</td>
<td>26</td>
<td>25</td>
<td>26</td>
<td>0.01</td>
</tr>
<tr>
<td>50-59 (n= 2,466)</td>
<td>48</td>
<td>47</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>60-70 (n= 1,329)</td>
<td>26</td>
<td>28</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Sex (Percent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>45</td>
<td>48</td>
<td>40</td>
<td><0.001</td>
</tr>
<tr>
<td>Smoking status during 5-year study period (Percent)†‡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-smoker</td>
<td>86</td>
<td>87</td>
<td>83</td>
<td><0.001</td>
</tr>
<tr>
<td>Intermittent smoker</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Continuous smoker</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Preventive Service Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. number Well care visits/5-yrs (SD)</td>
<td>1.10 (1.1)</td>
<td>1.10 (1.1)</td>
<td>1.09 (1.1)</td>
<td>0.65</td>
</tr>
<tr>
<td>Avg. number Retinal eye exams/5-yrs (SD)</td>
<td>4.04 (4.2)</td>
<td>4.13 (4.2)</td>
<td>3.91 (4.2)</td>
<td>0.08</td>
</tr>
<tr>
<td>Ambulatory Service Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg. primary care visits/5-yrs (SD)</td>
<td>21.90 (16.6)</td>
<td>22.65 (17.4)</td>
<td>20.70 (15.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Avg. specialty visits/5-yrs (SD)</td>
<td>11.99 (11.8)</td>
<td>12.47 (12.2)</td>
<td>11.21 (11.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Insurance type 2002 (Percent)†</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Medicare</td>
<td>12</td>
<td>14</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Individual</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Commercial</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>61</td>
<td>60</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Diabetes Complication Severity Index 02-03 (Percent)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0:0</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>0.1</td>
</tr>
<tr>
<td>1:1</td>
<td>23</td>
<td>23</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2: > 1</td>
<td>28</td>
<td>28</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Diabetes treatment intensity 02-06 (Percent)†</td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
</tr>
<tr>
<td>0: No hypoglycemic medication</td>
<td>23</td>
<td>22</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>1: Oral hypoglycemics only</td>
<td>46</td>
<td>46</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>2: Any insulin</td>
<td>31</td>
<td>32</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>RxRisk (comorbidity score) 2002 (Percent)†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201-1440</td>
<td>25</td>
<td>24</td>
<td>27</td>
<td>0.004</td>
</tr>
<tr>
<td>1441-2750</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2751-4560</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4561+</td>
<td>25</td>
<td>26</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Average Median BMI (1st 3 measurements in 2002-2006) (SD)†</td>
<td>33.72 (7.3)</td>
<td>33.95 (7.4)</td>
<td>33.36 (7.0)</td>
<td>0.006</td>
</tr>
</tbody>
</table>

* We used Pearson chi² for categorical variables and analysis-of-variance F-tests for continuous variables to test differences in percents and means of population characteristics by periodontitis status.
† Counts for missing data: smoking n= 2, RxRisk n=2, BMI n=187 (3.6%)
‡ Percentages do not add up to 100 due to rounding
Table 2. Multivariate linear regression analysis: Annual mean GHb modeled as a function of periodontitis status in diabetic patients with medical and dental insurance, age 40-77, and at least one medical and dental visit during the 5-year study period.

<table>
<thead>
<tr>
<th>Model</th>
<th>Difference in mean GHb among patients who did and did not receive periodontal care</th>
<th>P-value</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted (n=5103)</td>
<td>0.11</td>
<td>0.005</td>
<td>0.03</td>
<td>0.19</td>
</tr>
<tr>
<td>Age, BMI & sex adjusted (n= 5103)</td>
<td>0.09</td>
<td>0.02</td>
<td>0.01</td>
<td>0.17</td>
</tr>
<tr>
<td>Multiple adjustment (n= 5099)</td>
<td>0.08</td>
<td>0.04</td>
<td>0.005</td>
<td>0.16</td>
</tr>
<tr>
<td>Multiple adjustment and controlling for severity of diabetes † (n= 5099)</td>
<td>0.08</td>
<td>0.02</td>
<td>0.01</td>
<td>0.15</td>
</tr>
</tbody>
</table>

*. Covariates included in model; age, BMI, sex, RxRisk in 2002, smoking status, number of primary care visits (square root), number of specialty care visits (square root), number of well visits (square root), number of GHb tests (square root).
†. In addition to covariates mentioned in 3 above, this model also included diabetes treatment level (no medication for diabetes, oral glycemic medication only, or any insulin) and Diabetes Complication Severity Index variables.
Table 3. Stratified analysis: Annual mean GHb modeled as a function of periodontitis status in multivariate linear regression models in diabetic patients, age 40-70, with medical and dental insurance and at least one medical and dental visit during the 5-year study period.

<table>
<thead>
<tr>
<th>Stratification variable*</th>
<th>Difference in GHb among patients who did and did not receive periodontal care</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>Interaction P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x*</td>
<td></td>
<td></td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Female (n=2261)</td>
<td>0.18</td>
<td>0.08</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Male (n= 2564)</td>
<td>-0.01</td>
<td>-0.10</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Age group*†</td>
<td></td>
<td></td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>40-49 (n= 1223)</td>
<td>0.20</td>
<td>0.04</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>50-70 (n=3602)</td>
<td>0.04</td>
<td>-0.03</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Diabetes Complication Severity Index*</td>
<td></td>
<td></td>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td>DCSI = 0 (n=2466)</td>
<td>0.01</td>
<td>-0.08</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>DCSI = 1 (n=1208)</td>
<td>0.16</td>
<td>0.03</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>DCSI ≥ 2 (n=1425)</td>
<td>0.09</td>
<td>-0.04</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²)*</td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
</tr>
<tr>
<td>≤ 24.9 (n=410)</td>
<td>0.18</td>
<td>-0.06</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>25-29.9 (n=1180)</td>
<td>0.09</td>
<td>-0.04</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>30-39.9 (n=2363)</td>
<td>0.10</td>
<td>0.004</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>40+ (n=872)</td>
<td>-0.06</td>
<td>-0.24</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Insulin Use*</td>
<td></td>
<td></td>
<td></td>
<td>0.47</td>
</tr>
<tr>
<td>No insulin use (n=3297)</td>
<td>0.04</td>
<td>-0.04</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Insulin use (n=1528)</td>
<td>0.12</td>
<td>-0.014</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Smoking*</td>
<td></td>
<td></td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>Non-smoker (n=4145)</td>
<td>0.10</td>
<td>0.03</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Intermittent smoker (n=434)</td>
<td>-0.06</td>
<td>-0.28</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>Continuous smoker (n=246)</td>
<td>-0.01</td>
<td>-0.37</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

* Covariates included in models; age, BMI, sex, RxRisk in 2002, smoking status, number of primary care visits (square root), number of specialty care visits (square root), number of well visits (square root), number of A1C tests (square root), treatment level (no medication for diabetes, oral glycemic medication only, or any insulin) and Diabetes Complication Severity Index variables.
† Controlled for age within age group.
Association between GHb and periodontitis

Figure 1. Flow diagram showing study inclusion and exclusion criteria

Continuous Enrollment 2002 -2006
Age 40-70 years

Group Health
155,625 records
n=141,709

Washington Dental Service
413,954 records
n= unknown due to lack of unique consumer numbers

Linked population
n=78,230

1. Exclude enrollees with organ transplants, HIV/AIDS, dementia, or cancer (except non-melanoma skin cancers)

Linked population
with exclusions applied
n=75,814

2. Restrict population to those in the GH integrated group practice to ensure completeness of automated data for diabetes definition.

Linked integrated group practice population
n=51,761

3. Since diabetes was defined based on automated data collected during medical visits we restricted our sample to enrollees who also had at least 1 dental visit during the study period to reduce health care utilization bias.

Linked IGP population with 1 dental visits
n=46,497

4. Ran diabetes algorithm

Study sample of patients with diabetes
n=5214

5. Missing data on GHb outcome

Analysis sample
n= 5,103