Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase III trial

Ele Ferrannini, MD1, Silvia Jimenez Ramos, MD2, Afshin Salsali, MD3, Weihua Tang, PhD4, James F. List, MD, PhD3

1Department of Internal Medicine, University of Pisa School of Medicine, Pisa, Italy, 2Hospital Jardines De Guadalupe, Guadalajara, Mexico, 3Bristol-Myers Squibb, Princeton, NJ, United States, 4Bristol-Myers Squibb, Hopewell, NJ, United States.

Corresponding Author:
Ele Ferrannini, M.D.
Email: ferranni@ifc.cnr.it

Clinical Trial Registration No.: NCT00528372; clinicaltrials.gov

Submitted 30 March 2010 and accepted 14 June 2010.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective – Dapagliflozin, a highly selective inhibitor of the renal sodium glucose co-transporter-2 (SGLT2), increases urinary excretion of glucose and lowers plasma glucose levels in an insulin-independent manner. We evaluated the efficacy and safety of dapagliflozin in treatment-naïve patients with type 2 diabetes.

Research Design and Methods – This was a 24-week parallel-group, double-blind, placebo-controlled phase 3 trial. Patients with glycosylated hemoglobin (A1C) 7.0-10% (n=485) were randomly assigned to one of 7 arms to receive once-daily placebo or dapagliflozin 2.5, 5 or 10 mg once-daily in the morning (main cohort) or evening (exploratory cohort). Patients with A1C 10.1-12% (high-A1C exploratory cohort; n=73) were randomly assigned 1:1 to receive blinded treatment with a morning dose of dapagliflozin 5 or 10 mg/day. Primary endpoint was change from baseline in A1C in the main cohort, statistically tested using an analysis of covariance.

Results – In the main cohort, mean A1C changes from baseline at week 24 were -0.23% with placebo and -0.58%, -0.77% (P=0.0005 vs placebo), and -0.89% (P<0.0001 vs placebo) with dapagliflozin 2.5, 5, and 10 mg, respectively. Signs, symptoms and other reports suggestive of urinary tract infections and genital infection were more frequently noted in the dapagliflozin arms. There were no major episodes of hypoglycemia. Data from exploratory cohorts were consistent with these results.

Conclusions – Dapagliflozin lowered hyperglycemia in treatment-naïve patients with newly diagnosed type 2 diabetes. The near absence of hypoglycemia and an insulin-independent mechanism of action make dapagliflozin a unique addition to existing treatment options for type 2 diabetes.

The need for optimal management of glycemia in patients with type 2 diabetes has long been recognized owing to the well established association between sustained hyperglycemia and serious microvascular complications including retinopathy, neuropathy and nephropathy (1). However, because metabolic risk factors frequently occur as a cluster, it is difficult to control glycemia in patients with type 2 diabetes without negatively affecting one or more of the associated risk factors of hypertension, obesity, and hyperlipidemia. This is exemplified by the treatment-limiting side effects of many available antidiabetic agents, particularly in patients with a longer duration of disease (2-5). Sulphonylureas, thiazolidinediones and insulin are all associated with weight gain in patients with diabetes (6,7). Negative effects on associated metabolic risk factors are not limited to antidiabetic agents; as an example, treatment of hypertension with thiazides is associated with increased uric acid levels and a worsening of hyperglycemia (8-10). In addition to the deleterious effect on metabolic comorbidities, and for some agents an increased risk of hypoglycemia, treatment with most antidiabetic agents is further confounded by a loss of efficacy over time, in part due to the progressive worsening of diabetes characterized by insulin resistance and impaired glucose-stimulated insulin secretion (11).

An on-going effort to identify new treatment strategies for diabetes has led to the development of dapagliflozin, the first in a class of compounds referred to as sodium glucose cotransporter 2 (SGLT2) inhibitors. SGLT2 is located almost exclusively in the
Kidney proximal tubules where it reabsorbs most of the ~180 g of glucose that is filtered through the glomeruli each day. Dapagliflozin is a highly selective and reversible inhibitor of SGLT2. A prolonged pharmacokinetic half-life due to the C-aryl glucoside-derived chemical structure, as well as a nearly 3000-fold selectivity for SGLT2 versus SGLT1, make it possible to administer dapagliflozin in an unmodified oral form without affecting SGLT-1 mediated glucose transport in other tissues (12-14). Dapagliflozin can inhibit up to a half of the filtered glucose from being reabsorbed by the kidney, resulting in a dose-dependent increase in urinary glucose excretion and, ultimately, improvement in glycemic parameters (15-18). Also relevant here are observations that renal reabsorptive capacity for glucose may be increased in patients with diabetes (19,20). On the basis of these findings, we conducted a phase 3 trial of dapagliflozin, administered as monotherapy for 24 weeks to treatment-naïve patients with type 2 diabetes. We report here results from the study.

RESEARCH DESIGN AND METHODS

Men and women with type 2 diabetes, aged 18-77 years, were enrolled between September 2007 and July 2008 at 85 sites in USA, Canada, Mexico and Russia. Eligible patients were treatment-naïve subjects whose hyperglycemia was inadequately controlled with diet and exercise alone. Entry criteria included body mass index (BMI) ≤ 45 kg/m² and fasting C-peptide ≥ 1.0 ng/ml. Patients were excluded if they had history of type 1 diabetes; serum creatinine ≥133 μmol/L (men)/≤124 μmol/L (women); urine albumin/creatinine ratio >200 mg/mmol; aspartate transaminase and/or alanine transaminase >3 × upper limits of normal (ULN); creatine kinase ≥ 3 × ULN; symptoms of severely uncontrolled diabetes (including marked polyuria and polydipsia with >10% weight loss during the last 3 months before enrollment); significant renal, hepatic, hematological, oncological, endocrine, psychiatric, or rheumatic diseases; cardiovascular event (including New York Heart Association class III/IV congestive heart failure) within 6 months of enrollment; and severe uncontrolled blood pressure (systolic blood pressure ≥180 mmHg and/or diastolic blood pressure ≥110 mmHg).

This was a 24-week randomized, parallel-group, double-blind, placebo-controlled phase-3 trial with a 2-week diet/exercise placebo lead-in (1 week for patients with enrolment A1C 10.1-12.0%). The respective institutional review board or independent ethics committee approved the study protocol and all patients gave informed consent. Patients with A1C 7.0-10% were randomized equally to one of 7 arms to receive once-daily placebo or dapagliflozin 2.5, 5 or 10 mg, administered once-daily either in the morning (main cohort) or evening (exploratory cohort) for 24 weeks. Patients with A1C 10.1-12% (high-A1C exploratory cohort) were assigned randomly in a 1:1 ratio to receive blinded treatment with a morning dose of dapagliflozin 5 or 10 mg/day (a placebo group was not included due to the high-A1C levels). Patients with a fasting plasma glucose (FPG) >270 mg/dl at week 4, >240 mg/dl at week 8, >200 mg/dl at weeks 12-24 were eligible for open-label rescue medication (metformin, 500 mg, titrated as needed up to 2000 mg). Patients with A1C>8.0% for 12 weeks despite a maximum tolerated metformin dose were discontinued. Throughout study, patients received diet/exercise counseling per ADA recommendations.

Endpoints and Assessments. The primary efficacy endpoint was change from baseline in A1C at week 24 in the main patient cohort. Secondary efficacy measures included change from baseline at week 24 in FPG and body weight. Efficacy measures assessed in the exploratory evening dose and high-A1C
cohorts included change from baseline at week 24 in A1C, FPG and body weight. For patients requiring rescue medication, data obtained post-rescue were excluded from efficacy analyses. Fractional renal glucose excretion was calculated as the ratio of urine-to-plasma glucose multiplied by the ratio of plasma-to-urine creatinine.

Safety assessments included vital signs, laboratory measurements and adverse events [coded using preferred terms of the Medical Dictionary for Regulatory Activites (MedDRA version 11.1)]. In addition, at each visit, patients were actively monitored for clinical signs and symptoms suggestive of urinary tract infections (UTIs) and genital infections. UTI and genital infections are reported here as adverse event of special interest and include any of the prospectively defined 20 preferred terms relating to possible upper UTI events, 44 preferred terms relating to possible non-upper UTI events, and 49 preferred terms relating to possible genital infections (including bacterial and mycotic infections). Patients were instructed to self-monitor their blood glucose daily and to report any unusually high or low blood glucose event or any symptoms suggestive of hypoglycemia.

Statistical analysis. Analyses of change from baseline in A1C, FPG and body weight were performed using an analysis of covariance with treatment group as effect and baseline value as covariate. Point estimates and 95% confidence interval were calculated for the mean change from baseline within each treatment group as well as for the difference in mean change from baseline between treatment groups. Per study design, no P values were generated for endpoints in exploratory cohorts.

RESULTS
A total of 485 patients were randomized to the main morning dose and exploratory evening dose cohorts (Fig. 1). Additionally, 74 patients were randomized to the exploratory, high-A1C cohort, of which 73 patients took at least one dose of study medication. Demographic and baseline characteristics are shown in Table 1.

In the main cohort, mean A1C reductions were dose-ordered and apparent by week 4 and maintained thereafter (Fig 2A). Mean A1C reductions from baseline at week 24 in the main cohort ranged from -0.58 to -0.89 % with dapagliflozin compared with -0.23% with placebo. The reductions were statistically significant with 5 and 10 mg dapagliflozin (P=0.0005 and P<0.0001, respectively vs placebo). At the end of study, a higher proportion of patients in dapagliflozin arms reached the ADA/EASD target A1C of <7% (41%, 44%, 51% with dapagliflozin 2.5, 5, and 10 mg, respectively versus 32% with placebo).

Reductions in FPG were apparent as early as week 1. Throughout study, FPG reductions were more marked in 5 and 10 mg dapagliflozin arms and were statistically significant at week 24 (Fig. 2B; Table 2). Mean body weight decreases were greater with all dapagliflozin doses than with placebo, although not reaching statistical significance (Fig 3C; Table 2).

In the exploratory evening dose cohort, changes from baseline in A1C, FPG and body weight at week 24 were similar to those seen in the main patient cohort (Table 2). In the exploratory high-A1C cohort (10.1-12% at enrollment), treatment with dapagliflozin for 24 weeks led to numerically greater reductions in mean A1C and FPG from baseline than those observed in other cohorts (Table 2). Subgroup analyses of the main patient cohort by baseline A1C were consistent with dapagliflozin’s ability to cause greater A1C reductions in patients with high baseline A1C. In patients with baseline A1C ≥9%, changes in mean A1C from baseline at week 24 were -1.23 (± 0.98)%, -1.98 (± 0.90)%, and -1.90 (± 0.79)% with 2.5 mg, 5
mg and 10 mg dapagliflozin groups, respectively, compared to 0.16 (±2.50)% with placebo.

Treatment with dapagliflozin did not result in any clinically meaningful changes from baseline in serum electrolytes including serum sodium (Table 2). There were no clinically relevant changes in any renal function parameter including serum creatinine, BUN or cystatin-C. In addition, there were no clinically relevant changes in mean serum albumin with dapagliflozin treatment. Small, numerical decreases from baseline in hs-CRP [placebo-subtracted adjusted mean change from baseline value (SE) ranged from -1.53 (1.06) to -2.67 (1.10) mg/L] and serum uric acid were observed in most dapagliflozin arms. Small, dose-ordered mean increases in hematocrit (up to 2.4%) were observed with dapagliflozin. A decrease in mean seated blood pressure with no notable increase in orthostatic hypotension was observed in the dapagliflozin arms (Table 2). Rates of hypotension/dehydration/hypovolemia were similar among placebo and dapagliflozin arms. Treatment with dapagliflozin did not alter the lipid profile of patients although small numerical increases in high-density lipoprotein (HDL) cholesterol were noted in all dapagliflozin arms [placebo-subtracted adjusted mean change from baseline value (SE) ranged from 0.02 (0.07) to 0.17 (0.08) mmol/L].

Glucose:creatinine ratios were higher with dapagliflozin compared with placebo (Table 2). Higher values with evening dose presumably reflect the pharmacokinetic half-life of dapagliflozin. In pooled data from morning and evening cohorts, changes from baseline in fractional renal glucose excretion at week 24 were significantly related ($r=-0.13$, $P=0.008$) with the corresponding changes in body weight, such that across all study arms greater renal glucose losses were associated with larger decrements in body weight. A similar trend was found for changes in glucose excretion and changes in A1C ($P=0.11$).

Adverse events are summarized in Table 3. There was one death due to motor vehicle accident in the 10 mg dapagliflozin group. There were no major episodes of hypoglycemia in this study and none of the patients discontinued study medication due to hypoglycemia. An increased incidence in signs and symptoms and other reports suggestive of UTI and genital infections was noted with dapagliflozin treatment. Safety data in the exploratory evening dose cohort were similar to that in the morning dose cohort. A small number of patients (n=6) experienced nocturia with evening dose (1, 2, and 3 patients in dapagliflozin 2.5, 5 or 10 mg evening dose arms, respectively; none with morning dose). There were no other notable differences in the number or type of adverse events reported with evening dose.

CONCLUSIONS

Administration of dapagliflozin as monotherapy to treatment-naïve patients with type 2 diabetes resulted in clinically meaningful decreases in A1C and FPG, along with favorable effects on weight, BP and other metabolic parameters.

Although the decrease in body weight in our study did not reach statistical significance compared to placebo, dapagliflozin treatment did lead to increased renal glucose excretion. This glucose excretion persisted for the full 24-week study period and was consistent with the urinary loss of ~200-300 calories per day as previously reported (17). A factor that may have lessened the effect of dapagliflozin on weight was the large placebo effect in this study, which was likely due to a greater impact of diet/exercise counseling on motivated, newly-diagnosed patients in a clinical trial setting. It should also be noted that the progressive decrease in weight over
time had not reached a plateau by the end of study; thus, long-term studies are needed to more precisely gauge the effect of dapagliflozin on weight in the monotherapy setting. Furthermore, in exploratory analysis of pooled data greater increments in fractional renal glucose excretion were associated with greater decrements in body weight, suggesting a link between the mechanism of action of dapagliflozin and clinical outcome.

Data from the high-A1C cohort are of particular relevance given dapagliflozin’s mechanism of action as an SGLT2 inhibitor. Patients with high A1C at enrollment are likely already to present with glycosuria as their filtered glucose load may exceed the kidney’s absorption capacity. Despite this, dapagliflozin was able to elicit a considerable improvement in glycemia in the exploratory high-A1C cohort. Results from subgroup analysis of patients with baseline A1C ≥9% were also consistent with the observation that dapagliflozin continues to be efficacious in patients who present with higher A1C levels.

There were no major episodes of hypoglycemia in this study. Following prospectively defined monitoring (see Methods), signs and symptoms suggestive of UTI and genital infections were more frequently reported in the dapagliflozin arms. The reported signs/symptoms/events of UTI and genital infections resolved with standard care and rarely led to discontinuation.

The decrease in mean systolic and diastolic BP noted in this study is in keeping with the diuretic effect of dapagliflozin. Also consistent with this is the increase in hematocrit levels noted in the dapagliflozin arms. In addition to BP, favorable, albeit small, effects were also noted in several other clinical parameters including HDL cholesterol, uric acid, and hs-CRP. Although effects on weight, BP and other metabolic risk factors were small, they may have a cumulative benefit in the long term.

Most notably, lowering of plasma glucose with dapagliflozin is accompanied by a urinary loss of calories, suggesting a shift towards negative net energy balance. This is quite unlike other antidiabetic agents, which often cause weight gain as they lower plasma glucose concentrations. Given its effect on net energy balance and its insulin-independent mechanism, dapagliflozin is likely to have beneficial effects in a wide spectrum of patients with diabetes (17, 18).

Author Contributions: EF, SJR, AS, WT, and JFL participated in the analysis and interpretation of data. AS and JFL participated in study concept and design. AS participated in data acquisition. WT participated in statistical analysis and verification of data. All authors contributed to writing and revising the report.

ACKNOWLEDGMENTS

This study was funded by Bristol-Myers Squibb and AstraZeneca. AS, WT and JFL are employees of Bristol-Myers Squibb and hold stock interests in the company. SJR was a trialist for this study. EF has attended advisory board meetings and undertaken consultancy at Bristol-Myers Squibb and AstraZeneca. We thank the investigators and contributors from each of the study sites. We also thank Sudha Vemuri, PhD, an employee of Bristol-Myers Squibb, for her writing and editorial support. Parts of this study were presented in abstract form at the 20th World Diabetes Congress, Montreal, Canada, October 18-22, 2009.

Figure Legends:

Figure 1–Patient disposition
Figure 2– Changes in glycemic parameters over time. A: Mean change from baseline in A1C after adjusting for baseline value. B: Mean change from baseline in fasting plasma glucose (FPG) after adjusting for baseline value. C: Mean change from baseline in body weight after adjusting for baseline value. Error bars represent 95% CIs.

REFERENCES
potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the
Whaley JM. Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in
14. Bellamine A. Dapagliflozin is a potent, competitive, selective and reversible inhibitor of
15. Komoroski B, Vachharajani N, Boulton D, Kornhauser D, Geraldes M, Li L, Pfister M.
Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects.
novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type
17. List JF, Woo V, Morales E, Tang W, Fiedorek FT. Sodium-glucose co-transport
18. Wilding JPH, Norwood P, T’joen C, Bastien A, List JF, Fiedorek FT. A study of
dapagliflozin in patients with type 2 diabetes receiving high doses of insulin plus insulin
19. Farber SJ, Berger EY, Earle DP. Effect of diabetes and insulin on the maximum capacity
transporters in human renal proximal tubular cells isolated from the urine of patients with non-
<table>
<thead>
<tr>
<th></th>
<th>Placebo N=75</th>
<th>Primary cohort</th>
<th>Exploratory cohorts</th>
<th>Exploratory cohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Dapagliflozin morning dose</td>
<td>Dapagliflozin evening dose</td>
<td>Dapagliflozin morning dose (A1C ≥ 10.1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 mg N=65</td>
<td>5 mg N=64</td>
<td>10 mg N=70</td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td>52.7 (10.3)</td>
<td>53.0 (11.7)</td>
<td>52.6 (10.9)</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>31 (41.3)</td>
<td>36 (55.4)</td>
<td>31 (48.4)</td>
<td>34 (48.6)</td>
</tr>
<tr>
<td>Women, n(%)</td>
<td>44 (58.7)</td>
<td>29 (44.6)</td>
<td>33 (51.6)</td>
<td>36 (51.4)</td>
</tr>
<tr>
<td>A1C (%)</td>
<td>7.84 (0.87)</td>
<td>7.92 (0.90)</td>
<td>7.86 (0.94)</td>
<td>8.01 (0.96)</td>
</tr>
<tr>
<td>FPG (mg/dl)</td>
<td>159.9 (42.1)</td>
<td>164.1 (48.0)</td>
<td>162.2 (45.0)</td>
<td>166.6 (41.5)</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>88.8 (19.0)</td>
<td>90.8 (22.8)</td>
<td>87.6 (17.1)</td>
<td>94.2 (18.7)</td>
</tr>
<tr>
<td>BMI (kg/m²)*</td>
<td>32.3 (5.5)</td>
<td>32.6 (5.5)</td>
<td>31.9 (4.8)</td>
<td>33.6 (5.4)</td>
</tr>
<tr>
<td>Diabetes duration (yrs), median (Q1, Q3)</td>
<td>0.50 (0.10,3.40)</td>
<td>0.50 (0.10,1.40)</td>
<td>0.25 (0.10,1.40)</td>
<td>0.45 (0.10,3.40)</td>
</tr>
</tbody>
</table>

Data are mean (SD) except where noted. *Mean baseline value for patients who have at least one post-baseline BMI measurement.
Table 2. Changes from baseline at week 24 in efficacy parameters, vital signs and laboratory values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Placebo N=75</th>
<th>Primary cohort</th>
<th>Exploratory cohorts</th>
<th>Dapagliflozin morning dose</th>
<th>Dapagliflozin morning dose (A1C ≥ 10.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.5 mg N=65</td>
<td>5 mg N=64</td>
<td>10 mg N=70</td>
<td>2.5 mg N=67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 mg N=68</td>
<td>10 mg N=76</td>
<td></td>
<td>5 mg N=34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mg N=76</td>
<td></td>
<td></td>
<td>10 mg N=39</td>
</tr>
<tr>
<td>A1C (%)†</td>
<td>-0.23</td>
<td>-0.58</td>
<td>-0.77§</td>
<td>-0.89§</td>
<td>-0.83</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td>(0.11)</td>
</tr>
<tr>
<td>FPG (mg/dl)†</td>
<td>-4.1</td>
<td>-15.2</td>
<td>-24.1§</td>
<td>-28.8§</td>
<td>-25.6</td>
</tr>
<tr>
<td></td>
<td>(3.9)</td>
<td>(4.2)</td>
<td>(4.3)</td>
<td>(4.0)</td>
<td>(4.1)</td>
</tr>
<tr>
<td>Weight (kg)†</td>
<td>-2.2</td>
<td>-3.3</td>
<td>-2.8</td>
<td>-3.2</td>
<td>-3.8</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(0.5)</td>
<td>(0.5)</td>
<td>(0.5)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Urinary glucose: creatinine (g/g)§</td>
<td></td>
<td>0.96</td>
<td>12.12</td>
<td>17.68</td>
<td>33.80</td>
</tr>
<tr>
<td></td>
<td>(2.87)</td>
<td>(2.98)</td>
<td>(3.28)</td>
<td>(3.08)</td>
<td>(3.07)</td>
</tr>
<tr>
<td>Vital Signs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seated Systolic BP (mmHg)§</td>
<td>-0.9</td>
<td>-4.6</td>
<td>-2.3</td>
<td>-3.6</td>
<td>-4.0</td>
</tr>
<tr>
<td></td>
<td>(1.8)</td>
<td>(1.8)</td>
<td>(1.9)</td>
<td>(1.9)</td>
<td>(2.3)</td>
</tr>
<tr>
<td>Seated Diastolic BP (mmHg)§</td>
<td>-0.7</td>
<td>-2.8</td>
<td>-1.7</td>
<td>-2.0</td>
<td>-3.2</td>
</tr>
<tr>
<td></td>
<td>(1.0)</td>
<td>(1.1)</td>
<td>(1.1)</td>
<td>(1.1)</td>
<td>(1.2)</td>
</tr>
<tr>
<td>Laboratory Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum creatinine (μmol/L)§</td>
<td>-0.4</td>
<td>-0.6</td>
<td>-2.0</td>
<td>-1.1</td>
<td>-0.5</td>
</tr>
<tr>
<td></td>
<td>(0.9)</td>
<td>(1.3)</td>
<td>(1.4)</td>
<td>(1.0)</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Serum albumin (g/L)§</td>
<td>-0.1</td>
<td>0.6</td>
<td>0.3</td>
<td>0.9</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
<td>(0.4)</td>
<td>(0.4)</td>
<td>(0.3)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>Cystatin C (mg/L)§</td>
<td>-0.014</td>
<td>-0.009</td>
<td>0.005</td>
<td>-0.003</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.016)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Hematocrit (%)§</td>
<td>-0.38</td>
<td>1.60</td>
<td>1.74</td>
<td>2.38</td>
<td>1.23</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.33)</td>
<td>(0.40)</td>
<td>(0.44)</td>
<td>(0.26)</td>
</tr>
<tr>
<td>Serum uric acid (μmol/L)†§</td>
<td>-11.9</td>
<td>-39.3</td>
<td>-50.6</td>
<td>-51.7</td>
<td>-59.5</td>
</tr>
<tr>
<td></td>
<td>(5.6)</td>
<td>(6.0)</td>
<td>(6.1)</td>
<td>(5.8)</td>
<td>(5.9)</td>
</tr>
<tr>
<td>Blood urea nitrogen (mmol/L)§</td>
<td>0.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.2)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Serum electrolytes§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium (mmol/L)</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.9</td>
<td>-0.4</td>
<td>-0.1</td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.4)</td>
<td>(0.4)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>Potassium (mmol/L)</td>
<td>-0.03</td>
<td>-0.05</td>
<td>0</td>
<td>-0.01</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.05)</td>
<td>(0.06)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Calcium (mmol/L)</td>
<td>0.01</td>
<td>0.00</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.01)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Magnesium (mmol/L)</td>
<td>-0.25</td>
<td>0.50</td>
<td>0.0</td>
<td>0.15</td>
<td>-0.20</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.26)</td>
<td>(0.26)</td>
<td>(0.25)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Inorganic phosphorus (mmol/L)</td>
<td>-0.01</td>
<td>0.04</td>
<td>0.05</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.02)</td>
<td>(0.03)</td>
<td>(0.02)</td>
<td>(0.02)</td>
<td>(0.02)</td>
</tr>
</tbody>
</table>

Data are mean ± SE unless noted otherwise.*Assessed in patients with non-missing baseline and week 24 values with last observation carried forward. † Mean value after adjusting for baseline value. ‡ Data are mean (SD). ‡‡ Assessed in patients with non-missing baseline and week 24 values. || Ratio from morning, fasting spot urine test. NA=not assessed. *^ap<0.001; ^bp<0.0001 [α=0.019 (2-sided) applying Dunnett’s adjustment; secondary endpoints tested using a sequential procedure].
Table 3. Adverse events

<table>
<thead>
<tr>
<th>Adverse Events (AE), n (%)</th>
<th>Placebo N=75</th>
<th>Primary cohort</th>
<th>Exploratory cohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>At least one AE</td>
<td></td>
<td>2.5 mg N=65</td>
<td>5 mg N=64</td>
</tr>
<tr>
<td></td>
<td>45 (60.0)</td>
<td>41 (63.1)</td>
<td>37 (57.8)</td>
</tr>
<tr>
<td>At least one serious AE</td>
<td>3 (4.0)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Discontinuation for AE</td>
<td>1 (1.3)</td>
<td>2 (3.1)</td>
<td>3 (4.7)</td>
</tr>
<tr>
<td>Discontinuation for serious AE</td>
<td>0</td>
<td>0</td>
<td>1 (1.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Most common AEs (≥10% in any group) by MedDRA preferred term, n (%)*</th>
<th>Placebo N=75</th>
<th>Primary cohort</th>
<th>Exploratory cohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasopharyngitis</td>
<td></td>
<td>2.5 mg N=65</td>
<td>5 mg N=64</td>
</tr>
<tr>
<td></td>
<td>4 (5.3)</td>
<td>7 (10.8)</td>
<td>3 (4.7)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1(1.3)</td>
<td>4 (6.2)</td>
<td>1 (1.6)</td>
</tr>
<tr>
<td>Headache</td>
<td>5 (6.7)</td>
<td>5 (7.7)</td>
<td>3 (4.7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events by special interest category</th>
<th>Placebo N=75</th>
<th>Primary cohort</th>
<th>Exploratory cohorts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypoglycemia†</td>
<td>2 (2.7)</td>
<td>1 (1.5)</td>
<td>0</td>
</tr>
<tr>
<td>Events suggestive of urinary tract infection‡</td>
<td>3 (4.0)</td>
<td>3 (4.6)</td>
<td>8 (12.5)</td>
</tr>
<tr>
<td>Events suggestive of genital infections§</td>
<td>1 (1.3)</td>
<td>5 (7.7)</td>
<td>5 (7.8)</td>
</tr>
<tr>
<td>Hypotensive events</td>
<td>1 (1.3)</td>
<td>0</td>
<td>1 (1.4)</td>
</tr>
</tbody>
</table>

Data shown include data after rescue. * Additional adverse events with ≥5% incidence in any of the primary cohort and exploratory evening dose arms were: arthralgia, pharyngitis, upper respiratory infection, urinary tract infection, back pain, dizziness, constipation, influenza, myalgia, peripheral edema, pain in extremity and insomnia. †None of the hypoglycemic events led to discontinuation from study and none was a major episode, defined as a symptomatic episode requiring third party assistance due to severe impairment in consciousness or behavior, with a capillary or plasma glucose value <54 mg/dL, and prompt recovery after glucose or glucagon administration. ‡These events included signs, symptoms, and other reports suggestive of urinary tract infections. §These events included signs, symptoms, and other reports suggestive of genital infections. ††Not placebo-controlled.
Figure 1

513 treatment-naive patients with HbA1c 7.0 to 10.0% enrolled and entered 2-week lead-in phase

485 patients randomised

Dapagliflozin Q AM (main cohort)

Placebo
N=75

2 lack of efficacy
5 lost to follow-up
1 withdraw consent
4 other

2.5 mg
N=66

2 adverse events
1 lost to follow-up
2 withdraw consent

5 mg
N=64

2 adverse events
2 lost to follow-up
7 withdraw consent
1 other

10 mg
N=70

6 adverse events
3 lost to follow-up
6 withdraw consent
1 other

2.5 mg
N=67

3 lost to follow-up
6 withdraw consent

5 mg
N=69

3 adverse events
2 lost to follow-up
4 withdraw consent
1 non-compliance
1 other

10 mg
N=76

3 adverse events
2 lost to follow-up
6 withdraw consent

5 mg
N=55

3 lost to follow-up
2 withdraw consent
1 never received study medication
1 other

10 mg
N=39

1 lost to follow-up
4 withdraw consent

78 treatment-naive patients with HbA1c 10.1 to 12% enrolled and entered 1-week lead-in phase

74 patients randomised

Exploratory cohort: High HbA1c patients Dapagliflozin Q AM

Exploratory cohort:

Table completed

28 patients not randomised:
11 withdrew consent
10 lost to follow-up
3 poor/non-compliance
2 adverse events
1 criteria not met
1 other

4 patients not randomised:
2 lost to follow-up
1 withdrew consent
1 criteria not met
Figure 2

A

Change from baseline in A1C (%)

Week 24 value (95% CI)

-0.23 (-0.43 to -0.02)
-0.56 (-0.80 to -0.36)
-0.77 (-0.99 to -0.55)
-0.89 (-1.10 to -0.67)

Week

0 2 4 8 16 20 24

B

Change from baseline in FPG (mg/dl)

Week 24 value (95% CI)

-4.1 (-11.6 to 3.5)
-15.2 (-23.5 to -7.0)
-24.1 (-32.5 to -16.6)
-28.8 (-36.8 to -20.0)

Week

0 2 4 8 12 16 20 24

C

Change from baseline in body weight (kg)

Week 24 value (95% CI)

-2.2 (-3.3 to -1.3)
-3.3 (-4.2 to -2.3)
-2.8 (-3.8 to -1.9)
-3.2 (-4.0 to -2.3)

Week

0 2 4 8 12 16 20 24