Effects of thyroid hormone on glycated hemoglobin and glycated albumin levels in non-diabetic subjects with overt hypothyroidism

Mee Kyoung Kim, MD1, Hyuk Sang Kwon, MD, PhD1, Ki-Hyun Baek, MD, PhD1, Je Hoon Lee, MD, PhD2, Woo Chan Park, MD, PhD3, Hyung Sun Sohn, MD, PhD4, Kwang-Woo Lee, MD, PhD1, Ki-Ho Song, MD, PhD1

1Department of Internal Medicine, 2Department of Laboratory Medicine, 3Department of Surgery, 4Department of Nuclear Medicine
College of Medicine
The Catholic University of Korea, Seoul, Korea

Address correspondence to:
Ki-Ho Song, M.D., Ph.D.
Email: kihos@catholic.ac.kr

Submitted 23 May 2010 and 29 August 2010.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: We aimed to determine the effects of thyroid hormone on glycated hemoglobin (A1C) and glycated albumin (GA) in non-diabetic patients with overt hypothyroidism.

Research Design and Methods: A1C levels were measured in 45 non-diabetic patients with overt hypothyroidism and 180 euthyroid controls. A1C, GA, fasting blood glucose (FBS), 1,5-anhydroglucitol and erythrocyte indexes were determined in 30 non-diabetic patients with overt hypothyroidism before and after thyroid hormone replacement.

Results: A1C levels were higher in patients with hypothyroidism compared with controls. A1C levels were decreased by thyroid hormone replacement. Thyroid hormone replacement increased serum erythropoietin, reticulocyte count, and mean corpuscular hemoglobin (MCH). The change in A1C level was significantly correlated with the change in reticulocyte count or MCH. Thyroid hormone replacement decreased serum levels of albumin and GA. However, FBS and 1,5-anhydroglucitol levels were not altered.

Conclusions: Levels of A1C and GA are spuriously high in non-diabetic patients with overt hypothyroidism.

Glycated hemoglobin (A1C) is widely used for assessment of glycemic control, and ADA recently recommended its use for diagnosing diabetes and pre-diabetes (1). Recently, serum glycated albumin (GA) has been introduced as a marker of short-term glycemia (2). However, A1C or GA is subject to certain limitations. Conditions that affect erythrocyte turnover or survival lead to falsely high or low A1C levels (3-6). GA levels might be influenced by serum albumin metabolism (2). Thyroid hormone stimulates erythrocyte production, and hypothyroidism often results in hypoproliferative erythropoiesis (7-8). In addition, thyroid hormone promotes albumin metabolism, and albumin degradation is reduced in hypothyroidism (9). We therefore hypothesized that A1C or GA levels do not accurately reflect glycemia in hypothyroidism. Thus, we aimed to determine the effects of thyroid hormone on A1C and GA levels in non-diabetic patients with overt hypothyroidism.

RESEARCH DESIGN AND METHODS

First, we performed a cross-sectional study (Study 1) in 45 non-diabetic patients with thyroid cancer who underwent thyroid hormone withdrawal (THW) in preparation for radioiodine treatment after total thyroidectomy. Patients with diabetes, anemia, renal insufficiency, liver dysfunction, and severe hypertriglyceridemia were excluded. For control subjects, 180 age- and sex-matched healthy euthyroid subjects were enrolled. Fasting blood samples were obtained for analysis of glucose, A1C and TSH.

Second, a prospective trial (Study 2) was undertaken on non-diabetic patients with thyroid cancer who underwent THW during radioiodine treatment. Patients were evaluated at the end of the four-week THW period (Visit 1) and 8–12 weeks after subsequent thyroid hormone replacement (Visit 2). During Visit 1, fasting blood samples were obtained from all patients for analysis of hemoglobin (Hb) level, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), reticulocyte count, and serum levels of EPO, TSH, free thyroxine (fT4), glucose, A1C, GA, and 1,5-
anhydroglucitol (1,5-AG). These variables were measured again during Visit 2. A1C level was measured using an automated HPLC analyzer (HLC-723 G7, Tosoh Corporation, Tokyo, Japan). Intra- and inter-assay coefficients of variation were 0.89% and 1.56%, respectively, at an A1C of 5.6%. GA level was measured using an enzymatic method involving albumin-specific proteinase, ketoamine oxidase, and albumin assay reagent (Lucica GA-L; Asahi Kasei Pharma Co., Tokyo, Japan). 1,5-AG level was measured using an enzymatic colorimetric assay (GlycoMark; Tomen America, New York, NY).

The paired samples t-test or the Wilcoxon signed rank test were used to compare variables before and after thyroid hormone replacement. Pearson correlation analysis was conducted to assess associations between variables. P < 0.05 was considered statistically significant.

RESULTS
In Study 1, TSH levels were significantly higher in patients with overt hypothyroidism compared with the controls. A1C levels were higher in patients with hypothyroidism compared with the controls (5.54±0.43 vs. 5.34±0.31%, P < 0.001). In contrast, fasting blood glucose (FBS) levels were lower in patients with hypothyroidism than in the controls (Supplementary Table 1 in the online appendix at http://care.diabetesjournals.org).

In Study 2, thirty patients were consecutively enrolled. After four weeks of THW, serum TSH and fT4 levels were 84.5±20.7 mIU/L (reference range, 0.38–4.94 mIU/L) and 5.2±0.1 pmol/L (reference range, 9.0–24.9 pmol/L), respectively. After radioiodine treatment, patients received a standard protocol of thyroid hormone therapy. During this period, serum TSH and fT4 levels were 0.2±0.5 mIU/L and 22.8±5.1 pmol/L, respectively. A1C level decreased after thyroid hormone replacement (from 5.57±0.26 to 5.37±0.32%, P < 0.001; Table 1). Thyroid hormone replacement increased EPO level, reticulocyte count, MCV and MCH. Thyroid hormone replacement decreased serum albumin level, and GA level. However, thyroid hormone replacement did not alter GA-to-A1C ratio, FBS, or 1,5-AG level.

The change in A1C was correlated with the change in reticulocyte count (γ = −0.381, P = 0.042) and the change in MCH (γ = −0.466, P = 0.010).

Six patients were evaluated before total thyroidectomy (euthyroidism), after THW (hypothyroidism), and after thyroid hormone replacement (euthyroidism). A1C levels tended to increase during hypothyroidism (from 5.52±0.25 to 5.63±0.28 %, P = 0.082) and then return to baseline levels (from 5.52±0.25 to 5.50±0.29 %, P = 0.426) (Supplementary Figure 1).

CONCLUSIONS
We found that A1C levels were significantly higher in patients with overt hypothyroidism compared with controls. In addition, A1C levels decreased after thyroid hormone replacement in patients with overt hypothyroidism. Serum EPO level, reticulocyte count, and MCH increased after thyroid hormone replacement, suggesting that thyroid hormone stimulates erythropoiesis. Moreover, the change in A1C level was negatively correlated with the change in reticulocyte count and MCH. These data suggest that thyroid hormone replacement is associated with a decrease in A1C level, which is influenced by increased erythropoiesis rather than by changes in glucose level. Ten of 30 patients (33%) had an A1C ≥ 5.7% during overt hypothyroidism, but after thyroid hormone replacement only 4 of 30 patients (13%) had an A1C ≥ 5.7%. The ADA Expert Committee recently endorsed an A1C of 5.7–6.4% as indicative of pre-diabetes (1). According to these criteria, 20% of our subjects (6 of 30 patients) were misclassified
as having pre-diabetes. However, use of A1C for diagnosing pre-diabetes is not universally accepted. GA levels decrease in patients with nephrotic syndrome, which shortens the half-life of serum albumin, and increase in patients with liver cirrhosis, which prolongs the half-life of serum albumin (2). Albumin metabolism is prolonged in hypothyroidism, and thyroid hormone promotes albumin metabolism. We demonstrated that GA levels decreased, along with serum albumin levels, after thyroid hormone replacement. Although abnormal glucose metabolism is common in thyrotoxicosis, the effect of overt hypothyroidism on glucose metabolism is still a subject of debate (10-11). In our study, GA-to-A1C ratio, FBS and 1,5-AG level (a marker for postprandial hyperglycemia) (12) were not altered by thyroid hormone replacement. The limitation of this study includes the fact that patient selection was narrowed by choosing iatrogenic hypothyroid patients prior to radioiodine treatment. Second, we did not measure erythrocyte life span. In conclusion, our data suggest that non-diabetic patients with overt hypothyroidism showed spuriously high levels of A1C and GA. Therefore, the effects of thyroid hormone on A1C and GA must be considered when interpreting these parameters in patients with thyroid disorders.

ACKNOWLEDGEMENTS
This study was supported by a grant from the Korean Diabetes Association in 2010. We would like to thank Hye-Sun So, St. Mary’s Hospital, for her valuable assistance.

REFERENCES
9. Larsen P, Davies T.: Hypothyroidism and thyroiditis. In Williams Textbook of

Table 1. Laboratory characteristics of 30 non-diabetic patients with overt hypothyroidism before and after thyroid hormone replacement in Study 2.

<table>
<thead>
<tr>
<th></th>
<th>Before thyroid hormone replacement</th>
<th>After thyroid hormone replacement</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47.3±12.3</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Sex (M/F)</td>
<td>7/23</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>A1C (%)</td>
<td>5.57±0.26</td>
<td>5.37±0.32</td>
<td><0.001</td>
</tr>
<tr>
<td>GA (%)</td>
<td>13.18±1.35</td>
<td>12.52±1.16</td>
<td>0.027</td>
</tr>
<tr>
<td>GA/A1C</td>
<td>2.38±0.29</td>
<td>2.35±0.28</td>
<td>0.587</td>
</tr>
<tr>
<td>Glucose (mmol/L)</td>
<td>4.95±0.41</td>
<td>5.24±0.92</td>
<td>0.174</td>
</tr>
<tr>
<td>1,5-AG (µg/mL)</td>
<td>20.03±6.92</td>
<td>21.42±7.45</td>
<td>0.086</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>14.05±1.35</td>
<td>13.64±1.23</td>
<td>0.004</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>88.29±4.73</td>
<td>90.78±4.75</td>
<td><0.001</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>29.48±2.04</td>
<td>30.25±1.95</td>
<td><0.001</td>
</tr>
<tr>
<td>Reticulocyte (%)</td>
<td>0.64±0.18</td>
<td>1.09±0.34</td>
<td><0.001</td>
</tr>
<tr>
<td>Ferritin (ng/mL)</td>
<td>74.34±64.30</td>
<td>76.31±57.58</td>
<td>0.689</td>
</tr>
<tr>
<td>EPO (mIU/mL)</td>
<td>12.93±4.97</td>
<td>16.41±6.44</td>
<td>0.022</td>
</tr>
<tr>
<td>Albumin (g/L)</td>
<td>43.5±1.7</td>
<td>42.6±1.6</td>
<td>0.009</td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>6.21±1.23</td>
<td>4.37±0.75</td>
<td><0.001</td>
</tr>
<tr>
<td>Triglyceride (mmol/L)</td>
<td>1.57±1.01</td>
<td>1.62±1.15</td>
<td>0.802</td>
</tr>
</tbody>
</table>

M, male; F, female; A1C, glycated hemoglobin; GA, glycated albumin; 1,5-AG, 1,5-anhydroglucitol; Hb, hemoglobin; MCV, mean corpuscular volume; MCH, mean corpuscular hemoglobin; EPO, erythropoietin.