Extended Family History of Diabetes and Autoimmune Diseases in Children With and Without Type 1 Diabetes

Alhonen Salla, MS¹, Korhonen Sari, MD¹, Tapanainen Päivi, MD, PHD¹, Knip Mikael, MD, PHD²,³, Veijola Riitta, MD, PHD¹

¹ Department of Pediatrics, University of Oulu, Oulu, Finland
² Hospital for Children and Adolescents and Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
³ Department of Pediatrics, Tampere University Hospital, Tampere, Finland

Short running title: Family History of Diabetes and Autoimmune Diseases

Corresponding author:
Riitta Veijola, MD, PhD
Email: riitta.veijola@oulu.fi

Submitted 8 June 2010 accepted 20 September 2010.

This is an uncopied electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective - To determine the extended family history of diabetes or autoimmune diseases in families with and without children having type 1 diabetes.

Research design and methods – 300 case families and 381 control families were interviewed using structured questionnaires.

Results - The proportion of case children having at least one relative with type 1 diabetes outside the nuclear family was higher than that of control children (50.3% vs. 31.8%; \(p<0.001 \)). The proportions of cases and controls having relatives with type 2 diabetes or gestational diabetes were similar. Other autoimmune diseases occurred more frequently among the cases (9.7% vs. 1.1%, \(p<0.001 \)), in the case nuclear families (22.0% vs. 12.9%, \(p=0.002 \)) and in relatives outside the case nuclear family (72.0% vs. 62.2%, \(p=0.007 \)).

Conclusion - Type 1 diabetes and autoimmune diseases not only cluster in the nuclear families of children with type 1 diabetes but are also overrepresented in their extended families.

First degree relatives of patients with type 1 diabetes clearly have an increased disease risk (1-5), but little information is available about the occurrence of type 1 diabetes outside the nuclear family (6). It is also unclear whether type 2 diabetes and gestational diabetes are more frequently present in the families of children with type 1 diabetes (7-9). Type 1 diabetes is known to be associated with other autoimmune diseases, but there is a scarcity of data on the frequency of autoimmune diseases among other family members (10).

RESEARCH DESIGN AND METHODS
All families having a child with type 1 diabetes who was being treated at the Department of Pediatrics, Oulu University Hospital in September 2003 were invited to participate in this study (n=306). Six families refused. The parents were interviewed and a structured questionnaire was completed by a trained nurse (LM). Control children matched for year of birth, sex and geographical region of residence were picked at random from the Central Population Register. The data for each family were included only once.

The families were asked about the presence of any type of diabetes in siblings, parents and other relatives. The type of diabetes (type 1, type 2 and gestational), the age at diagnosis and the mode of treatment (diet, medication, insulin) were enquired. The parents were also asked about the occurrence of other autoimmune diseases in the family (celiac disease, rheumatoid arthritis, systemic lupus erythematosus, Still’s disease, Sjögren’s syndrome, thyroid dysfunction, hypothyroidism, hyperthyroidism, goitre, psoriasis, scleroderma, ulcerative colitis, Crohn’s disease, Addison’s disease, multiple sclerosis and myasthenia gravis).

We analysed the relatives in three groups: nuclear family (the case, siblings and parents), extended family (nuclear family together with grandparents, siblings of parents and their children, and siblings of grandparents and their children) and extended family excluding the nuclear family.

Data analysis was performed with the SPSS for Windows statistical software (version 16.0; SPSS, Chicago, IL). The study was approved by the local ethical committee.
RESULTS
Data were obtained on 300 families with at least one child having type 1 diabetes and 381 control families without diabetic children. The mean age of the case children at the time of data collection was 11.9 years (4.29; SD, range 1.3-19.0) and that of the control children 12.4 years (4.33; SD, range 1.1-19.9; p=0.102). The mean age of the cases at diagnosis was 6.7 years (3.87; SD, range 0.56-15.98).

The proportion of children having relatives with type 1 diabetes was higher among the case children (Table 1.). No differences were found between the case and control children in the proportion having relatives with type 2 diabetes (Table 1.) or in the history of gestational diabetes between the case and control mothers (8.0% vs. 8.9%; p=0.668) or grandmothers (1.7% vs. 0.8%; p=0.290).

Celiac disease, rheumatoid arthritis or thyroid dysfunction had been diagnosed more often in the case children than in the controls (4.7% vs. 0.5%, p<0.001; 1.3% vs. 0.0%, p=0.024; 2.7% vs. 0.3%, p=0.006, respectively). In addition, two case children had psoriasis and one had purpura, while one control child was diagnosed with Crohn’s disease. Altogether 9.7% of case children and 1.1% of controls had an autoimmune disease other than type 1 diabetes (p<0.001).

A total of 22.0% of the nuclear families of the cases had at least one family member with another autoimmune disease compared to 12.9% in the control nuclear families (p=0.002). Celiac disease in particular was more common in the case nuclear families (8.0% vs. 2.9%, p=0.003).

When considering extended family outside the nuclear family a larger proportion of the case children had a positive family history of another autoimmune disease in at least one relative (72.0% vs. 62.2%; p=0.007), the difference being statistically significant for rheumatoid arthritis but not for celiac disease or thyroid dysfunction (45.7% vs. 30.4%, p<0.001; 31.7% vs. 28.6%, p=0.387; 25.2% vs. 28.0%, p=0.410; respectively).

CONCLUSION
This analysis of a population-based series of families of children with type 1 diabetes and control families demonstrates that type 1 diabetes or other autoimmune diseases not only cluster among the parents and siblings of the case children but occur more often also among their relatives outside the nuclear family.

The strength of this study lies in the systematically collected data from case and control families in a country that has the highest incidence of type 1 diabetes in the world (11). To our knowledge, this is the first report to describe type 1 diabetes and other autoimmune diseases among relatives other than parents, siblings or grandparents. However, the major limitation of the study was that family history data was based on interviews only, and may therefore be inaccurate.

Analysis of the maternal and paternal relatives separately yielded similar differences between the cases and controls (Table 1.). We confirmed that case children more often have a father than a mother with type 1 diabetes (5.0% vs. 2.0%). However, there was no such difference in the proportion of cases having at least one father’s or mother’s sibling with type 1 diabetes (5.7% vs. 7.3%). These observations suggest that intrauterine factors may contribute to relative protection of children of mothers with type 1 diabetes.

In children with type 1 diabetes another autoimmune disease was observed more often than in the controls, confirming earlier reports that have showed an association between type 1 diabetes and other autoimmune diseases such as autoimmune thyroiditis and celiac disease (12-13). Juvenile rheumatoid arthritis diagnosed by a pediatrician was also more common among our case children, which is a
novel finding but needs to be confirmed in a larger data set. Interestingly, type 1 diabetes has been reported to be more frequent in children with juvenile idiopathic arthritis than could be expected on the basis of its general US prevalence (14).

No differences in the occurrence of type 2 diabetes or gestational diabetes were observed between the case and control families this being in line with recent data showing that different genes predispose to type 1 and type 2 diabetes (15).

Author Contributions. S.A. researched data, contributed to discussion, wrote manuscript, edited manuscript. S.K. researched data. P.T. contributed to discussion, reviewed manuscript, M.K. contributed to discussion, reviewed manuscript. R.V. planned the study, researched data, contributed to discussion, reviewed manuscript.

ACKNOWLEDGEMENTS

We thank Ms Liisa Moilanen for her careful work in data collection and the diabetes nurses at the Department of Pediatrics, Oulu University Hospital for their skilful assistance.

This study was supported by the Foundation for Pediatric Research (Helsinki, Finland), the Alma and K.A. Snellman Foundation (Oulu, Finland) and the Oulu University Hospital Research Funds.

REFERENCES

Table 1. Proportions of children having a relative with type 1 or type 2 diabetes in their father’s or mother’s family. Comparison between case and control children. Siblings were not included in the analysis since the controls were selected to represent families without children having type 1 diabetes. None of the siblings of the cases or controls had type 2 diabetes.

<table>
<thead>
<tr>
<th></th>
<th>Type 1 diabetes in given family members</th>
<th>Type 2 diabetes in given family members</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case children (n=300)</td>
<td>Control children (n=381)</td>
</tr>
<tr>
<td>Father</td>
<td>5.0 %</td>
<td>1.3 %</td>
</tr>
<tr>
<td>Father’s sibling(s)</td>
<td>5.7 %</td>
<td>2.6 %</td>
</tr>
<tr>
<td>Paternal cousin(s)</td>
<td>6.3 %</td>
<td>3.9 %</td>
</tr>
<tr>
<td>Paternal grandparents</td>
<td>2.0 %</td>
<td>1.3 %</td>
</tr>
<tr>
<td>Any relative in the father’s family*</td>
<td>31.0 %</td>
<td>16.8 %</td>
</tr>
<tr>
<td>Any relative in the father’s family**</td>
<td>28.3 %</td>
<td>16.3 %</td>
</tr>
<tr>
<td>Mother</td>
<td>2.0 %</td>
<td>0.5 %</td>
</tr>
<tr>
<td>Mother’s sibling(s)</td>
<td>7.3 %</td>
<td>2.9 %</td>
</tr>
<tr>
<td>Maternal cousin(s)</td>
<td>8.7 %</td>
<td>3.9 %</td>
</tr>
<tr>
<td>Maternal grandparents</td>
<td>1.3 %</td>
<td>1.3 %</td>
</tr>
<tr>
<td>Any relative in the mother’s family*</td>
<td>30.0 %</td>
<td>19.4 %</td>
</tr>
<tr>
<td>Any relative in the mother’s family**</td>
<td>28.7 %</td>
<td>19.2 %</td>
</tr>
<tr>
<td>Any relative in either the father’s or mother’s family*</td>
<td>54.0 %</td>
<td>32.5 %</td>
</tr>
<tr>
<td>Any relative in either the father’s or mother’s family**</td>
<td>50.3 %</td>
<td>31.8 %</td>
</tr>
</tbody>
</table>

*extended family (parents, grandparents, siblings of parents and their children, siblings of grandparents and their children)

**extended family with the nuclear family excluded