Elevated Depressive Symptoms, Antidepressant Use, and Diabetes in a Large Multiethnic National Sample of Postmenopausal Women

YUNSHENG MA, MD, PHD
RAJ BALASUBRAMANIAN, SCD
SHERRY L. PAGOTO, PHD
KRISTIN L. SCHNEIDER, PHD
ANNIE L. CULVER, PHARM
BARBARA OLENDZKI, RD, MPH
LESLEY TINKER, RD, PHD
SIMIN LIU, MD, PHD

MONIKA SAFFORD, MD
DEIDRE M. SEPAVICH, MS
MILAGROS C. ROSAL, PHD
JUDITH K. OCKENE, PHD
MERCEDES CARNETHON, PHD
MARTHA ZORN, MS
JAMES R. HEBERT, MSPH, SCD

OBJECTIVE—To examine elevated depressive symptoms and antidepressant use in relation to diabetes incidence in the Women’s Health Initiative.

RESEARCH DESIGN AND METHODS—A total of 161,808 postmenopausal women were followed for over an average of 7.6 years. Hazard ratios (HRs) estimating the effects of elevated depressive symptoms and antidepressant use on newly diagnosed incident diabetes were obtained using Cox proportional hazards models adjusted for known diabetes risk factors.

RESULTS—Multivariable-adjusted HRs indicated an increased risk of incident diabetes with elevated baseline depressive symptoms (HR 1.14 [95% CI 1.08–1.21]) and antidepressant use (1.20 [1.09–1.32]). These associations persisted in year 3 data, in which respective adjusted HRs were 1.23 (1.09–1.39) and 1.31 (1.14–1.50).

CONCLUSIONS—Postmenopausal women with elevated depressive symptoms and who use antidepressants have a greater risk of developing incident diabetes. In addition, longstanding elevated depressive symptoms and recent antidepressant medication use increase the risk of incident diabetes.

Adults with depression have an increased risk of developing diabetes (1,2). Antidepressant medication use has been implicated in the relationship between depression and diabetes (3–6), although few studies have investigated the independent effect of depression and antidepressant use (4,6). Using Women’s Health Initiative (WHI) data, we tested the hypotheses that 1) elevated depressive symptoms and antidepressant use would each be independently associated with an increased risk of diabetes, and 2) the combination of elevated depressive symptoms and antidepressant use would have a compounded effect on incident diabetes risk.

RESEARCH DESIGN AND METHODS—The WHI enrolled 161,808 participants into clinical trials and an observational study (WHI-OS group) (7–10). Medication use, depressive symptoms, and diabetes status were collected repeatedly over an average of 7.6 years of follow-up. The study was approved by the institutional review boards of participating WHI institutions, and institutional review board exemption for the current investigation was obtained at the University of Massachusetts Medical School.

Diabetes status was determined by self-report of ever having received a physician diagnosis of and/or treatment for diabetes when not pregnant. Diabetes status was recorded at baseline and annually. This method is a reliable indicator of diagnosed diabetes, validated with medication and laboratory data assessments (11). Time to diabetes was calculated as the interval between the enrollment date and the earliest of the following: 1) the date of the annual medical history update when new diabetes status was ascertained (positive outcome); 2) the date of the last annual medical update during which diabetes status could be ascertained (censorship); or 3) the date of death (censorship).

Depressive symptoms at baseline and year 3 were measured using the Center for Epidemiological Studies Depression Scale (CES-D) six-item form (12). A cut point of five or higher categorized subjects as having elevated depressive symptoms (13). Medication names from container labels provided by participants were matched to the Master Drug Database (Medi-Span, Indianapolis, IN) at baseline and year 3. Based on the Master Drug Database classification, a binary indicator for antidepressant medication use was created.
Evidence of a multiplicative interaction effect at baseline and longitudinally was assessed in Cox proportional hazards models that included main effects and a multiple interaction term.

RESULTS

At baseline, 15.5% of women were above the depression cutoff on the CES-D and were defined as having elevated depressive symptoms, and 6.9% of women reported using antidepressants. The cumulative incidence of self-reported diabetes was 6.9%. Self-reported diabetes incidence rates were 8.6% for women with elevated depressive symptoms and 6.3% for those without (Table 1). In unadjusted models, elevated depressive symptoms were significantly related to diabetes risk (hazard ratio [HR] 1.38 [95% CI 1.32–1.45]). The multivariate-adjusted HR was 1.14 (1.08–1.21). Antidepressant use was also significantly related to diabetes risk (unadjusted HR 1.30 [1.22–1.40]; multivariate-adjusted HR 1.20 [1.09–1.32]). Self-reported diabetes incidence rates by combinations of elevated depressive symptoms and antidepressant use at baseline were 6.3% for those not taking antidepressants and below the CES-D cutoff, 7.6% for those taking antidepressants and below the CES-D cutoff, 8.4% for those above the CES-D cutoff and not taking antidepressants, and 9.6% for those above the CES-D cutoff and taking antidepressants (P < 0.001). There was no evidence of a significant multiplicative interaction between elevated depressive symptoms and antidepressant use.

Compared with those who were never depressed and never used antidepressants, the risk of diabetes was higher for those who reported elevated depressive symptoms and used antidepressants at baseline and year 3 (Table 1). After adjustment for multiple covariates, only HRs for those who reported elevated depressive symptoms at baseline and year 3 remained significant (multivariate-adjusted HR 1.23 [95% CI 1.09–1.39]), whereas HRs for those who reported antidepressant use only at year 3 (1.44 [1.26–1.66]) and who reported antidepressant use at both time points were significant (1.31 [1.14–1.50]). There was no evidence of a significant multiplicative interaction between longitudinal measures of elevated depressive symptoms and antidepressant use. Although the test of the proportional hazards assumption failed (P < 0.001), elevated depressive symptoms and antidepressant use were found to be significantly associated with diabetes risk in accelerated failure time models that allowed nonproportional hazards over time.

Table 1—HRs of diabetes associated with elevated depressive symptoms and antidepressant medication use at baseline and the year 3 visit in the WHI, estimated from Cox proportional hazards models

<table>
<thead>
<tr>
<th>Primary exposure variable (n [self-reported incident diabetes %])</th>
<th>Unadjusted HR (95% CI)*</th>
<th>HR (95% CI) adjusted for age and race†</th>
<th>HR (95% CI) from the multivariate model‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline analyses (n = 152,250)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated depressive symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes (23,541 [8.6])</td>
<td>1.38 (1.32–1.45)</td>
<td>1.34 (1.27–1.41)</td>
<td>1.14 (1.08–1.21)</td>
</tr>
<tr>
<td>No (128,709 [6.3])</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Antidepressant medication use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes (10,512 [8.2])</td>
<td>1.30 (1.22–1.40)</td>
<td>1.42 (1.32–1.52)</td>
<td>1.20 (1.09–1.32)</td>
</tr>
<tr>
<td>No (141,738 [6.6])</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Longitudinal analyses (n = 70,874)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elevated depressive symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At baseline and year 3 (4,554 [8.32])</td>
<td>1.74 (1.57–1.94)</td>
<td>1.67 (1.50–1.86)</td>
<td>1.23 (1.09–1.39)</td>
</tr>
<tr>
<td>At baseline only (5,691 [5.96])</td>
<td>1.22 (1.09–1.36)</td>
<td>1.21 (1.08–1.35)</td>
<td>0.99 (0.87–1.12)</td>
</tr>
<tr>
<td>At year 3 only (6,625 [6.37])</td>
<td>1.32 (1.19–1.46)</td>
<td>1.31 (1.18–1.45)</td>
<td>1.06 (0.95–1.18)</td>
</tr>
<tr>
<td>Never (54,004 [4.92])</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Antidepressant medication use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At baseline and year 3 (3,466 [7.24])</td>
<td>1.46 (1.28–1.66)</td>
<td>1.60 (1.41–1.82)</td>
<td>1.31 (1.14–1.50)</td>
</tr>
<tr>
<td>At baseline only (1,530 [5.73])</td>
<td>1.14 (0.92–1.41)</td>
<td>1.19 (0.96–1.47)</td>
<td>0.92 (0.73–1.15)</td>
</tr>
<tr>
<td>At year 3 only (3,223 [7.51])</td>
<td>1.50 (1.32–1.71)</td>
<td>1.61 (1.42–1.84)</td>
<td>1.44 (1.26–1.66)</td>
</tr>
<tr>
<td>Never (62,655 [5.13])</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*Cox proportional hazards model including elevated depressive symptoms or antidepressant use. †Cox proportional hazards model including elevated depressive symptoms or antidepressant use, while adjusting for age and race/ethnicity. ‡Cox proportional hazards model, including both elevated depressive symptoms and antidepressant use jointly, while adjusting for age, race/ethnicity, education, smoking status at baseline, BMI, hours of recreational activity per week, alcohol intake, total daily energy intake, family history of diabetes, and hormone therapy use.
CONCLUSIONS—Elevated depressive symptoms and antidepressant use at baseline were independently associated with an increased risk of diabetes among postmenopausal women, but there was no compounded effect of elevated depressive symptoms and antidepressant use. Our longitudinal analyses indicate that only longstanding elevated depressive symptoms increase the risk of incident diabetes, whereas antidepressant use at 3 years is associated with a dramatically elevated risk regardless of its presence at baseline. Recent antidepressant medication may increase risk of incident diabetes.

Because self-report of diabetes incidence may be imprecise, we conducted sensitivity analyses using a fasting glucose ≥126 mg/dL to identify diabetes. Although results were not significant likely because of small sample size, the trends observed were similar to analysis results using self-reported diabetes. Because elevated depressive symptoms were assessed at only two time points, some cases may have been missed (14). Likewise, women who began and then discontinued antidepressants in between collection points would be missed. However, antidepressants often are used long-term (for ~5–7.5 years) (15).

Acknowledgments—This research was supported by a grant to Y.M. from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (1-R21-DK-083700-01A1). It also was supported in part by NIDDK Center Grant 5-P30-DK-32320. Y.M., S.L.P., and M.C.R. are members of the University of Massachusetts Diabetes and Endocrinology Research Center (DK-32320). The WHI Program is funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services (contracts N01WH22110, 24152, 32100-2, 32105-6, 32108-9, 32111-13, 32115, 32118-32119, 32122, 42107-26, 42129-32, and 44221). A list of WHI program investigators is available in the online supplementary data.

No potential conflicts of interest relevant to this article were reported.

Y.M. wrote the manuscript and researched data. R.B. performed data analyses and reviewed and edited the manuscript. S.L.P., K.L.S., A.L.C., B.O., L.T., S.L., M.S., D.M.S., M.C.R., J.K.O., and M.C. contributed to discussion and reviewed and edited the manuscript. M.Z. performed data analyses and reviewed and edited the manuscript. J.R.H. contributed to discussion and reviewed and edited the manuscript.

The authors thank the principal investigators of all WHI clinical centers and the data coordinating center for their contribution to the study. They are indebted to the dedicated and committed participants of the WHI.

References