Lower fasting muscle mitochondrial activity relates to hepatic steatosis in humans

Julia Szendroedi, MD, PhD, Kirti Kaul, PhD, Lisa Kloock, B.Sc., Klaus Straßburger, PhD, Albrecht Ingo Schmid, PhD, Marek Chmelik, PhD, Michaela Kacerovsky, MD, PhD, Gertrud Kacerovsky-Bielesz, MD, Thomas Prikoszovich, MD, Attila Brehm, MD, Martin Krššák, PhD, Stephan Gruber, PhD, Michael Krebs, MD, Alexandra Kautzky-Willer, MD, Ewald Moser, PhD, Giovanni Pacini, DSC, Michael Roden, MD

1Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany; 2Institute for Biometrics and Epidemiology, German Diabetes Center, Düsseldorf, Germany; 3Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany; 4MR Centre of Excellence, Medical University of Vienna, Vienna, Austria; 5Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria, 6Department of Radiology and Nuclear Medicine, Medical University of Vienna, Vienna, Austria, 7Karl-Landsteiner Institute for Endocrinology and Metabolism and 1st Medical Department, Hanusch Hospital, Vienna, Austria; 8Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria, 9Metabolic Unit, Institute of Biomedical Engineering, National Research Council, Padova, Italy

Running title: Muscle mitochondrial function and liver fat
Word count: abstract: 200 w, main text: 3.099 w
tables and figures: 4, supplemental figure: 1, references: 40

Corresponding author:
Prof. Dr. med. univ. Michael Roden
Institute for Clinical Diabetology, German Diabetes Center
Department of Endocrinology and Diabetology
University Clinics Heinrich-Heine University
Auf m Hennekamp 65, 40225 Düsseldorf, Germany
phone: +49-211-3382-201, fax: +49-211-3382-691
email: michael.roden@ddz.uni-duesseldorf.de
Abstract

Objectives. Muscle insulin resistance has been implicated in the development of steatosis and dyslipidemia by changing the partitioning of postprandial substrate fluxes. Also, insulin resistance may be due to reduced mitochondrial function. We examined the association between mitochondrial activity, insulin sensitivity and steatosis in a larger human population.

Research design and methods. We analyzed muscle mitochondrial activity from ATP synthase flux (fATP) and ectopic lipids by multinuclei magnetic resonance spectroscopy from 113 volunteers with and without diabetes. Insulin sensitivity was assessed from M-values using euglycemic-hyperinsulinemic clamps, and/or from OGIS using oral glucose tolerance tests (OGTT).

Results. Muscle fATP correlated negatively with hepatic lipid content and hemoglobin A1c (HbA1c). After model adjustment for study effects and other confounders, fATP showed a strong negative correlation with hepatic lipid content, and a positive correlation with insulin sensitivity and fasting C-peptide. The negative correlation of muscle fATP with age, HbA1c and plasma free fatty acids was weakened after adjustment. Body mass, muscle lipid contents, plasma lipoproteins and triglycerides did not associate with fATP.

Conclusion. The association of impaired muscle mitochondrial activity with hepatic steatosis supports the concept of a close link between altered muscle and liver energy metabolism as early abnormalities promoting insulin resistance.
Insulin resistance associates with ectopic lipid deposition in muscle (IMCL) and liver (HCL), increased lipid availability and cardiovascular complications (1; 2). It has been suggested that muscle insulin resistance predisposes for atherogenic dyslipidemia and nonalcoholic fatty liver disease (NAFLD) by partitioning the postprandial flux of ingested carbohydrates away from muscle glycogen synthesis towards hepatic de novo lipogenesis (3). This would increase very-low density lipoprotein (VLDL) export and in turn raise circulating triglycerides (TG) and low-density lipoproteins (LDL-C) (3). Some exercise studies support this concept in that reversal of muscle insulin resistance decreases HCL and dyslipidemia in humans at risk of type 2 diabetes mellitus (4; 5).

However, the interaction between liver and muscle metabolism in the development of insulin resistance is not fully understood. Increased insulin-stimulated de novo hepatic lipogenesis after carbohydrate intake might represent an important sink for excess glucose, ultimately improving glucose homeostasis. On the other hand, steatosis may result from inadequate hepatic oxidation rates (6), subsequently leading to increased lipid flux to skeletal muscle. Indeed, insulin resistance frequently associates with accumulation of IMCL or lipid metabolites (3). As greater lipid availability does not necessarily increase IMCL (7; 8), muscle lipid oxidation could be the link between liver and muscle metabolism (9; 10). Muscle mitochondrial activity assessed from ATP synthetic flux rates (fATP) reflects ADP-stimulated oxidative phosphorylation under variable conditions of energy demand and insulinemia (11).

Although fasting fATP can be lower in insulin resistant states such as aging and family history of type 2 diabetes (12), mitochondrial activity, capacity and content do not necessarily correlate with insulin sensitivity in humans (9; 13). These findings suggest that such dissociation between insulin sensitivity and mitochondrial function might depend on an interplay between muscle energy metabolism and hepatic fat storage. Of note, previous studies generally comprised of small groups thereby providing lower statistical power. To
overcome this limitation, we analyzed data from a series of studies performed in well-phenotyped volunteers with and without type 2 diabetes employing identical methodology for assessing fATP and HCL on the same MR-spectrometer.

Research Design and Methods

Participants
Data were collected from six clinical experimental studies, published between 2007 and 2011, including 113 individuals, who underwent assessment of muscle fATP, IMCL and HCL by one single method applied by one research group (7; 9; 14-17). All participants were sedentary according to Baecke et al. (18) in all studies. Female subjects were postmenopausal or studied between days 5 to 9 of their menstrual cycle. For three days prior to every study day, participants refrained from any physical exercise, consumed an isocaloric diet, and then fasted for 12 h before the start of the experiments. The number of individuals, their glucose tolerance, the methods for measuring glucose, insulin and C-peptide concentrations and for assessing insulin sensitivity have been described in detail in the studies summarized in Table 1. The parameters age, sex, body mass index (BMI), fATP and either OGIS or M-value had to be available for all individuals. Individuals with type 1 diabetes and with endocrine diseases other than type 2 diabetes were excluded from this analysis. Data were obtained at baseline, i.e. in the fasted state without or before any planned interventions. The selection process of the studies is described in a flow chart (Suppl. Fig.1). The local institutional ethics board approved all study protocols and all subjects gave written informed consent after the nature and possible consequences of the studies had been explained to them.

Measures of insulin sensitivity
For the oral glucose tolerance tests (OGTT), participants drank a solution, containing 75 grams of glucose dissolved in water, and underwent sampling of venous blood before (zero time) and at timed intervals for two hours. Measurements of plasma glucose and insulin at zero time, 90 and 120 min were used for calculating the OGIS (19). OGIS is a measure of glucose clearance and represents an index of whole-body insulin sensitivity, which has been validated against the euglycemic-hyperinsulinemic clamp (20). Euglycemic (~5.5 mmol/l)-hyperinsulinemic (~500 pmol/l) clamps were performed as previously reported using a primed-continuous insulin infusion (40 mU. m² body surface area-min⁻¹) and a variable 20% dextrose infusion. Whole-body insulin sensitivity was assessed from glucose infusion rates (M) during the last 30 min of the clamp (9). For comparison of measures of insulin sensitivity, we checked the available files comprising data from both OGTT and euglycemic-hyperinsulinemic clamps in the same persons regardless of their glucose tolerance or underlying pathology. The resulting data sets allowed the development of an equation to obtain a reconstructed M-value (Mr) from OGIS. After testing several different models, a simple linear regression finally yielded the best result (R=0.75, p=0.0001, Fig. 1) as given by the equation Mr [mg.min⁻¹.kg⁻¹] = 0.023 OGIS [ml.min⁻¹.m²] – 4.1. The equation was validated in several data sets from other studies, from which euglycemic-hyperinsulinemic clamps and OGTT were available (data not shown). This equation was then applied for the first time to the data of the present analysis to derive Mr values from OGTT data, which yielded a tight correlation (R=0.67, p<0.0001) between Mr and measured M-values.

In vivo magnetic resonance spectroscopy (MRS)

All measurements were performed by MR-spectroscopy experts with participants lying supine inside a 3 Tesla Medspec MR spectrometer (Bruker Biospin, Ettlingen, Germany). ³¹P-MRS was employed using a surface coil positioned ~2 cm into the medial head of the right gastrocnemius muscle and the saturation transfer experiment to measure fATP from the
exchange between Pi and ATP as described earlier (7; 9; 12).

Analytical procedures

Plasma glucose was measured by the glucose oxidase method (Glucose analyzer II, Beckman Coulter, http://www.beckmancoulter.com). Plasma free fatty acids (FFA) were assayed microfluorometrically in samples containing orlistat to prevent in vitro lipolysis (Wako Chem USA Inc., http://www.wakousa.com/) (7). Plasma lactate was determined enzymatically (Roche, http://www.roche.com/home.html) (7). Plasma insulin and C-peptide were determined by commercial double antibody RIA (7).

Statistical analyses

Data are presented as mean ± standard deviation (SD). We applied univariate and multivariate linear regression analyses to evaluate the relationships between fATP and insulin sensitivity, parameters of glucose and lipid metabolism.

Because of their skewed distributions, fATP, M-value, HCL, fasting plasma C-peptide, a surrogate marker of beta cell function, insulin, FFA, TG and the fasting TG-to-high-density lipoprotein cholesterol ratio (TG/HDL-C), which has been used as a surrogate of insulin resistance were transformed to their natural logarithms (ln) before further analyses. In order to estimate the predictive power of individual variables we performed regression analyses with multiple adjustments for parameters potentially confounding collinear associations with the dependent variable fATP. The multiple regression analysis for the dependent variable log-transformed flux rates through ATP synthase [fATP (ln)] included the following parameters: age, body mass index (BMI), insulin sensitivity [M-value or OGIS-derived reconstructed Mr-value], hemoglobin A1c (HbA1c), plasma free fatty acids (FFA), hepatocellular and intramyocellular lipid content [HCL, IMCL (ln)] as independent variables. Multiple regression with many predictor variables might serve as extension of linear regression with
two predictor variables. Of note, the inclusion of a bundle of independent variables automatically induces the selection of a specific subgroup of our study population.

Thus, we performed model analyses employing different models (M1 to M5) for each dependent variable and controlled for a potential influence of the study group, examining investigators and time point of investigation, by adjusting for the study effect (regression models M2-M5). Model 1 (M1) was not adjusted, whereas model 2 (M2) was adjusted for study effects, model 3 (M3) for study effects, age and sex, and model 4 (M4) for study effects, age, sex and BMI. The last model (M5) was further adjusted for glucose tolerance status (i.e., normal glucose tolerance, impaired fasting glucose/glucose intolerance, type 2 diabetes). Because of the previous reports on positive associations between M-value and muscle fATP and negative associations between M-value and HCL, we also examined the influence of HCL on the relationship between fATP and M-value. To this end, the analysis of fATP and M-value in model 6 (M6) was adjusted for study effects, age, sex, BMI, glucose tolerance and, additionally, for HCL.

As we aimed to compare the effect of independent variables, all of which were expressed in different units, on the dependent variable, we report standardized coefficients rather than correlation coefficients. All analyses were done using SAS for Windows Version 9.2 (SAS Institute, Cary, North Carolina, USA) software.

Results

Baseline characteristics

The study population comprised 113 (52 male and 61 female) participants with mean age of 40±13 years and mean BMI of (25.0±3.5 kg/m²), of whom 87 were glucose tolerant, 16 prediabetic, i.e. having impaired fasting glucose and/or glucose intolerance, and 10 individuals with overt type 2 diabetes (Table 1). The individuals were rather insulin sensitive
(M-value and Mr-value: 7.5 ± 4.6 and 7.0 ± 2.7 mg min$^{-1}$ kg$^{-1}$), and metabolically well controlled (hemoglobin A1c, HbA1c: 5.52 ± 0.62 % (37 ± 4 mmol/mol), TG: 95 ± 49 mg/dl, FFA: 462 ± 206 µmol/l).

Fasting muscle mitochondrial activity, age and glucose metabolism

Regression analyses were performed with fATP (ln) as dependent variable and the following independent variables: age, insulin sensitivity, fasting C-peptide (ln), fasting insulin (ln), fasting glucose and HbA1c (Table 2). Also, parameters potentially influencing the associations were identified and subsequently used for adjusting the regression analyses. The fATP (ln) correlated negatively with age when adjusted for study effects only, but not in models M4 or M5 (Fig. 1B). The fATP (ln) correlated positively with insulin sensitivity [M-value (ln) or Mr-value (ln)] upon adjustment in models M2, M3, M4 and M5. The correlation between fATP (ln) and M-value (ln) remained upon additional adjusting for HCL (M6: $p=0.043$, $\beta=0.225$, n=95). Fasting plasma C-peptide levels (ln) related negatively to fATP (ln) in models M2, M3, M4 and M5. While fasting plasma glucose and insulin did not associate with fATP (ln), HbA1c correlated negatively with fATP in models M1, M2 and M3 (Fig. 1C), but not in models M4 and M5.

Fasting muscle mitochondrial activity and fat distribution

Regression analyses were performed with fATP (ln) as dependent variable and BMI, HCL (ln) and IMCL (ln) as independent variables (Table 3). BMI as well as IMCL (ln) did not associate with fATP (ln). fATP (ln) correlated negatively with HCL in all tested models (Fig. 1D). In a multiple stepwise regression model HCL was also confirmed as the only independent predictor of fATP (standardized coefficient, B: -0.339, $p=0.003$). Of note, IMCL did not relate to fATP (ln) in any of the models.
Fasting muscle mitochondrial activity and lipid metabolism

Further regression analyses were performed with fATP (ln) as dependent variable and HDL-C, TG, TG/HDL-C and plasma FFA as independent variables (Table 3). Only fasting plasma FFA (ln) negatively related to fATP (ln), when adjusted for study effects in model M2. This association disappeared either without adjustments (M1) or in models M3, M4 and M5.

Discussion

The main finding of this study is the strong and independent correlation between fasting muscle mitochondrial activity and ectopic lipid deposition in the liver. Secondly, this analysis derived from a larger study population, supports previous reports on a positive relationship of fATP with age and insulin sensitivity in sedentary humans. Thirdly, fATP relates positively to glycemia as assessed from HbA1c and negatively with fasting plasma FFA. Finally, in this study population of adults with different glucose tolerance status, fATP did not relate to any other parameter of lipid metabolism or intramyocellular lipid storage.

The observed tight and significant association between muscle fATP and HCL was not detected previously. This is likely due to the lower statistical power of the individual studies, although some of the included studies at least suggested that individuals with high HCL may have lower fATP (9; 16; 17). While steatosis and NAFLD are known to relate to insulin resistance, and even predict type 2 diabetes (6; 21; 22), the interaction between HCL and muscle energy metabolism is less clear. According to one theory, decreased nonoxidative storage of ingested carbohydrates in skeletal muscle represents a primary abnormality in insulin resistant states. This would redirect glucose to the liver to serve as substrate for hepatic de novo lipogenesis and subsequently cause hyperinsulinemia, dyslipidemia and steatosis (4). In the present analysis, muscle fATP was measured during fasting, suggesting
that muscle energy metabolism may also interfere with liver energy storage in the postabsorptive state. In this context, a recent study reported higher muscle complex I activities, but lower mitochondrial content in morbidly obese NAFLD patients undergoing bariatric surgery (23). This suggests that increased activities of electron transport chain components reflect adaptation of muscle mitochondria to fat overload and mitochondrial damage. Indeed, muscle complex I activity gradually increased with progressing steatosis and fibrosis in that study. Another study found that lifestyle intervention resulting in greater muscle glucose disposal also improved steatosis and NAFLD (5). Although muscle mitochondrial function was not measured in that study, muscle mitochondrial adaptation could be one mechanism to modulate hepatic fat loading during the development of type 2 diabetes.

On the other hand, liver mitochondria could exhibit a similar abnormality as muscle mitochondria of persons at risk of type 2 diabetes, which would reduce hepatic fat oxidation and thereby favor TG deposition. In support of this contention, lower liver ATP levels (21), fATP (6) and ATP recovery upon fructose challenge (24) provide evidence for lower hepatic mitochondrial function, at least in insulin resistant groups such as severe obesity or type 2 diabetes. Furthermore, impaired hepatic energy metabolism could subsequently raise plasma FFA via lipolysis of VLDL (3) and in turn induce lipid-mediated muscle insulin resistance (25). Our observation of an independent correlation between HCL, fasting plasma FFA, insulin resistance and lower muscle fATP is in line with this concept. Nevertheless, these cross-sectional studies do not allow definite conclusions and of course, potentially coincident but significant relationships do not imply any causality.
Furthermore, the positive correlation between whole-body insulin sensitivity and muscle fATP is in agreement with data of one of our smaller group studies, reporting a correlation of M-value with fasting fATP in patients with type 2 diabetes (9). Lower fATP in insulin resistant compared with insulin sensitive healthy humans has also been observed in other studies during fasting (9; 12; 16; 17), hyperinsulinemia (9; 26), after exercise (15), and during acute lipid-induced insulin resistance (7), all without reporting an association of fATP with insulin sensitivity. In vivo mitochondrial oxidative capacity as assessed from post-exercise muscle phosphocreatine (fPCr) repletion was also reduced in patients with type 2 diabetes but did not correlate with insulin sensitivity (27). Likewise, ex vivo measures of mitochondrial function such as mitochondrial content (28), oxidative enzyme capacity (29; 30) and mitochondrial morphology (31) were lower in insulin resistant humans, but again without association with insulin sensitivity. However, only few cross-sectional studies found a correlation between insulin sensitivity and markers of mitochondrial function in untrained, metabolically well controlled humans with and without type 2 diabetes (9; 32; 33). On the other hand, some lifestyle intervention studies found associations between improvement of insulin sensitivity and various parameters of mitochondrial function and suggest that raising glucose and lipid oxidation rates could underlie reduction of insulin resistance (34). However, aerobic exercise training can consistently improve muscle mitochondrial response in all age-groups, whereas only younger participants also improved their insulin sensitivity (35). In this context, the present analyses reported a weak negative correlation of fATP with age in sedentary humans, which underlines the predominant role of physical activity as the major determinant of mitochondrial biogenesis and function (35). These previous findings may be explained by small size of the studied groups, however, dissociation between mitochondrial function and insulin sensitivity was also suggested. Although the individuals participating in the present combined analysis were rather insulin sensitive, lean or overweight and mostly
glucose tolerant and metabolically well controlled, fATP correlated with insulin sensitivity also upon adjustment for age, sex, BMI and glucose tolerance. Of note, even HCL did not disrupt the relationship between fATP and insulin sensitivity. Thus, analyzing this much larger study population revealed that reduced mitochondrial activity might be indeed an early abnormality occurring during the development of insulin resistance.

Nevertheless, impairment of mitochondrial function can result from chronic lipid- and glucose-mediated increases in oxidative substrate flux rates causing oxidative stress and thereby damaging mitochondrial proteins (11). Of note, the present analysis identified HbA1c as strong predictor of fATP and fasting plasma FFA as the only lipid parameter correlating (negatively) with fATP. Increase of mitochondrial oxidative capacity conferred by lipid-induced stimulation of the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (10; 36) might coincide with lipid-induced insulin resistance in skeletal muscle. This might explain, why others did not find a correlation of mitochondrial function and insulin sensitivity. On the other hand, hyperinsulinemia increases ATP synthesis (9; 26) while this effect is blunted in insulin resistant humans (9; 26) and during lipid exposure (7). Accordingly, C-peptide levels, as surrogate of insulin secretion, related negatively to fATP. Thus, insulin deficiency and insulin resistance at the level of mitochondria and poor metabolic control, comprising impaired adaptation to prevalent metabolic conditions rather than insufficient oxidative capacity, might limit oxidation rates (11). In accordance, some (1; 29) but not all studies found higher IMCL in patients with type 2 diabetes and no correlation with insulin resistance or fasting fATP (27), which is in line with our finding.

This analysis of a number of studies, consistently acquiring data on the same MR-scanner, benefits from the application of one single methodology for quantification of muscle ATP
production as a measure of mitochondrial activity to a metabolically well characterized larger study population. The applied saturation transfer method for assessing fATP by means of 31P-MRS has been validated in a variety of in vitro systems and in human muscle biopsy samples as reviewed recently (37). The limitations of this approach are that this method provides a measure of ATP synthesis/hydrolysis cycle at rest driven by energy demands rather than maximal oxidative capacity and that differences in individual mitochondrial content are not taken into account. Nevertheless, fATP associates with changes in mitochondrial content, coupling and oxygen consumption (38) and tightly correlates with fPCR (39) indicating that skeletal muscle with higher maximal oxidative ATP synthetic rates is also metabolically more active at rest. Increased prevalence of insulin resistance in Asian-Indian men was associated a 2-fold increase in HCL compared with caucasian men. These data demonstrate important ethnic differences in the pathogenesis of insulin resistance and steatosis (40). One further limitation of the study might be that only caucasian participants of identical ethnical background have been included.

In conclusion, the association of impaired muscle mitochondrial activity with hepatic steatosis supports the concept of a close link between altered muscle and liver metabolism as early abnormalities promoting insulin resistance.

Acknowledgments

J.S., K.K. and L.K. wrote the manuscript and researched data, K.S., I.S., M.C., M.K., G.K.B., T.P., A.B., M.K., S.G., M.K., A.K.W., G.P. researched data and reviewed/edited the manuscript; G.P. contributed to the development of the OGIS/clamp formula; E.M. reviewed/edited the manuscript and M.R. planned the study, wrote the manuscript, contributed to discussion and reviewed/edited the manuscript. M.R. is the guarantor of this
work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

The studies, analyzed for this work, were supported by the European Foundation for the Study of Diabetes (Novo Nordisk type 2 diabetes grant, GSK grant), the Austrian Science Foundation (P15656) and the Austrian National Bank (OENB 11459) to M.R., and by a Research Grant Award by the Austrian Diabetes Association (ÖDG) to G. K. B.. The work of J. S., K. K., L. K., K. S. and M. R. is supported in part by the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD e.V.).

E.M. acknowledges substantial financial support from the General Hospital in Vienna to operate the 3 T scanner, and continuous technical and logistic support by R. Velten, H. Post and B. Gewiese (Bruker Biospin, Germany).

The funding bodies had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors have no conflict of interest.
References

Figure legends

FIG. 1. Relationship between OGIS and M-value (n=21 who underwent both euglycemic-hyperinsulinemic clamps and OGTT) (A), and associations between flux through ATP synthase during fasting [fATP (ln)], with age (n=113) (B), hemoglobin A1c (n=86) (HbA1c) (C), and hepatocellular lipid content (n=95) (HCL) (D).
Table 1. Baseline characteristics (mean ± SD) of all participants, showing the number of participants per subgroup, sex, mean age and glucose tolerance: normal glucose tolerance / impaired fasting glucose or impaired glucose tolerance / type 2 diabetes.

<table>
<thead>
<tr>
<th>N [m/f]</th>
<th>Age [years]</th>
<th>Diabetes status</th>
<th>Assessment of insulin sensitivity</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 [4/3]</td>
<td>45±11</td>
<td>3/4/0</td>
<td>OGTT</td>
<td>(17)</td>
</tr>
<tr>
<td>7 [7/0]</td>
<td>26±2</td>
<td>7/0/0</td>
<td>clamp</td>
<td>(7)</td>
</tr>
<tr>
<td>31 [19/12]</td>
<td>47±16</td>
<td>21/0/10</td>
<td>clamp</td>
<td>(9)</td>
</tr>
<tr>
<td>5 [5/0]</td>
<td>27±1</td>
<td>5/0/0</td>
<td>OGTT/clamp</td>
<td>(14)</td>
</tr>
<tr>
<td>36 [17/19]</td>
<td>39±12</td>
<td>28/8/0</td>
<td>OGTT</td>
<td>(15)</td>
</tr>
<tr>
<td>27 [0/27]</td>
<td>36±5</td>
<td>25/2/0</td>
<td>OGTT/clamp</td>
<td>(16)</td>
</tr>
</tbody>
</table>

OGTT: oral glucose tolerance test.
Table 2. Associations between fasting muscle mitochondrial activity [fATP (ln)], age and glucose metabolism.

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>N</th>
<th>Model M1</th>
<th>Model M2</th>
<th>Model M3</th>
<th>Model M4</th>
<th>Model M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>113</td>
<td>-0.0039</td>
<td>-0.0052</td>
<td>-0.0052</td>
<td>-0.0045</td>
<td>-0.0033</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0522</td>
<td>0.0200</td>
<td>0.0245</td>
<td>0.543</td>
<td>0.1869</td>
</tr>
<tr>
<td>Insulin sensitivity (ln)</td>
<td>113</td>
<td>0.0672</td>
<td>0.2264</td>
<td>0.1905</td>
<td>0.1814</td>
<td>0.1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2434</td>
<td>0.0015</td>
<td>0.0141</td>
<td>0.0331</td>
<td>0.0430</td>
</tr>
<tr>
<td>Plasma glucose</td>
<td>113</td>
<td>-0.002</td>
<td>-0.0016</td>
<td>0.0029</td>
<td>-0.0003</td>
<td>0.0038</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0719</td>
<td>0.1821</td>
<td>0.2184</td>
<td>0.8121</td>
<td>0.1182</td>
</tr>
<tr>
<td>HbA1c</td>
<td>86</td>
<td>-0.1532</td>
<td>-0.1382</td>
<td>-0.1088</td>
<td>-0.0986</td>
<td>-0.0791</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0005</td>
<td>0.0037</td>
<td>0.0489</td>
<td>0.0687</td>
<td>0.3196</td>
</tr>
<tr>
<td>Plasma C-peptide (ln)</td>
<td>84</td>
<td>-0.0793</td>
<td>-0.3937</td>
<td>-0.3629</td>
<td>-0.3271</td>
<td>-0.3085</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1375</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0051</td>
<td>0.0167</td>
</tr>
<tr>
<td>Plasma insulin (ln)</td>
<td>113</td>
<td>-0.0513</td>
<td>-0.0003</td>
<td>-0.0116</td>
<td>0.0190</td>
<td>0.0157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2579</td>
<td>0.9996</td>
<td>0.8439</td>
<td>0.7660</td>
<td>0.8060</td>
</tr>
</tbody>
</table>

Linear regression analyses with log-transformed flux rates through ATP synthase [fATP (ln)] as dependent variable and insulin sensitivity [M-value or OGIS-derived reconstructed Mr-value], fasting concentrations of plasma glucose, C-peptide (ln) and insulin (ln) and hemoglobin A1c (HbA1c) as independent variables. Model M1 not adjusted; Model M2 adjusted for study effects; Model M3 adjusted for study effects, age and sex; Model M4 adjusted for study effects, age, sex and body mass index (BMI); Model M5 adjusted for study effects, age, sex, BMI and glucose tolerance.
Table 3. Associations between fasting muscle mitochondrial activity, fat distribution and lipid metabolism.

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>N</th>
<th>M1</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI</td>
<td>113</td>
<td>(\beta)</td>
<td>-0.0119</td>
<td>-0.0131</td>
<td>-0.0099</td>
<td>-0.0087</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>0.1120</td>
<td>0.0968</td>
<td>0.2189</td>
<td>0.2769</td>
</tr>
<tr>
<td>HCL (ln)</td>
<td>95</td>
<td>(\beta)</td>
<td>-0.0809</td>
<td>-0.0805</td>
<td>-0.0662</td>
<td>-0.0684</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>0.0015</td>
<td>0.0025</td>
<td>0.0185</td>
<td>0.0264</td>
</tr>
<tr>
<td>IMCL (ln)</td>
<td>112</td>
<td>(\beta)</td>
<td>0.0270</td>
<td>0.0614</td>
<td>0.0691</td>
<td>0.0752</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>0.5591</td>
<td>0.2321</td>
<td>0.1731</td>
<td>0.1371</td>
</tr>
<tr>
<td>Plasma TG (ln)</td>
<td>105</td>
<td>(\beta)</td>
<td>-0.0350</td>
<td>-0.0425</td>
<td>-0.0192</td>
<td>-0.0047</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>0.5323</td>
<td>0.4502</td>
<td>0.7427</td>
<td>0.9389</td>
</tr>
<tr>
<td>Plasma HDL-C</td>
<td>98</td>
<td>(\beta)</td>
<td>0.0759</td>
<td>0.0911</td>
<td>0.1504</td>
<td>0.1430</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>0.3872</td>
<td>0.3008</td>
<td>0.1199</td>
<td>0.1641</td>
</tr>
<tr>
<td>TG/HDL-C (ln)</td>
<td>91</td>
<td>(\beta)</td>
<td>-0.0604</td>
<td>-0.0674</td>
<td>-0.0587</td>
<td>-0.0628</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>0.2375</td>
<td>0.1950</td>
<td>0.2904</td>
<td>0.3016</td>
</tr>
<tr>
<td>Plasma FFA (ln)</td>
<td>104</td>
<td>(\beta)</td>
<td>-0.0981</td>
<td>-1.2135</td>
<td>-0.0930</td>
<td>-0.0989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>p-value</td>
<td>0.0759</td>
<td>0.0379</td>
<td>0.1291</td>
<td>0.1090</td>
</tr>
</tbody>
</table>

Linear regression with fATP (ln) as dependent variable and body mass index (BMI), hepatocellular lipid content [HCL (ln)] and intramyocellular lipid content [IMCL (ln)] as independent variables. Further linear regression analyses include parameters of systemic lipid profile, namely, fasting plasma concentrations of triglycerides [TG (ln)], high-density lipoprotein cholesterol [HDL-C], TG/HDL-C and plasma free fatty acids (FFA) as independent variables. M1 not adjusted; Model M2 adjusted for study effects; Model M3 adjusted for study effects, age and sex; Model M4 adjusted for study effects, age, sex and BMI; Model M5 adjusted for study effects, age, sex, BMI, and glucose tolerance.
Figure 1.

A

M-value [mg/kg/min^2] vs. OGIS [mg/m^2.min]

r = 0.7450
p = 0.0001

B

EATP [µmol/ml.min] vs. Age [years]

C

EATP [µmol/ml.min] vs. HbA1c [%]

β = -0.1532
p = 0.0005

D

EATP [µmol/ml.min] vs. HCL [% water signal] (ln)

β = -0.0809
p = 0.0015

254x190mm (300 x 300 DPI)
Legend to Suppl. Fig 1.

Flow chart of inclusion criteria: presence of flux through ATP synthase (fATP), age, body mass index (BMI), M-value, or Mr-value. Only those data sets that satisfied the depicted criteria were included into analysis. Type 1 diabetes (T1DM), type 2 diabetes (T2DM).
Flow chart of inclusion criteria: presence of flux through ATP synthase (fATP), age, body mass index (BMI), M-value, or Mr-value. Only those data sets that satisfied the depicted criteria were included into analysis. Type 1 diabetes (T1DM), type 2 diabetes (T2DM).