Prevalence of Diabetes Mellitus in U.S. Youth in 2009: The SEARCH for Diabetes in Youth Study.

David J. Pettitt1, Jennifer Talton2, Dana Dabelea3, Jasmin Divers2, Giuseppina Imperatore4, Jean M. Lawrence5, Angela D. Liese6, Barbara Linder7, Elizabeth J. Mayer-Davis8, Catherine Pihoker9, Sharon H. Saydah4, Debra A. Standiford10, Richard F. Hamman3 for the SEARCH for Diabetes in Youth Study Group.

1. Sansum Diabetes Research Institute, Santa Barbara, CA
2. Wake Forest School of Medicine, Winston-Salem, NC
3. Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO
4. Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, GA
5. Department of Research & Evaluation, Kaiser Permanente Southern California, Pasadena, CA
6. University of South Carolina, Columbia, SC
7. National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD
8. Departments of Nutrition and Medicine, University of North Carolina, Chapel Hill, NC
9. Department of Pediatrics, University of Washington, Seattle, WA
10. Cincinnati Children’s Hospital Medical Center, Cincinnati, OH

Running head: 2009 Diabetes Prevalence in Youth

Corresponding author: David J. Pettitt, MD
Sansum diabetes Research Institute
2219 Bath Street
Santa Barbara, CA 93103
dpettitt@sansum.org
Office ph: (805) 682-7638

Word count:
Abstract: 246
Text: 3103

Tables: 3
Figures: 2
Abstract:

Objective: To estimate the prevalence of diabetes in U.S. youth aged < 20 years in 2009 and to estimate the total number of youth with diabetes in U.S. by age, race/ethnicity, and diabetes type.

Research Design and Methods: To address one of its primary aims, the SEARCH for Diabetes in Youth Study identified youth aged < 20 years on 12/31/2009 with physician diagnosed diabetes in selected areas of Colorado, Ohio, South Carolina and Washington, among health plan members of Kaiser Permanente Southern California and among American Indians living on reservations in Arizona and New Mexico. Diabetes was classified as type 1, type 2 or other. Race/ethnicity was by self-report.

Results: From a population of 3,458,974 youth aged < 20 years, 7,695 with diabetes were identified (2.22/1000) – 6,668 with type 1 (1.93/1000), 837 with type 2 (0.24/1000) and 190 (0.05/1000) with other diabetes types. Prevalence increased with age, was slightly higher in females than males, and was most prevalent in non-Hispanic White (NHW) and least prevalent in Asian/Pacific Islanders, with Native American and Black youth having the highest prevalence of type 2 diabetes. An estimated 191,986 U.S. youth aged < 20 years have diabetes; 166,984 type 1, 20,262 type 2 diabetes, and 4,740 other types.

Conclusion: Diabetes mellitus, one of the leading chronic diseases in childhood, affects over 190,000 (1 out of 433) youth less than age 20 years in the US, with racial and ethnic disparities seen in diabetes prevalence, overall and by diabetes type.
Diabetes mellitus is the third most common chronic disease of childhood (1) and its incidence has been increasing world-wide (2-3). Diabetes in children and adolescents is a set of complex disorders with heterogeneity in etiology, pathogenesis, clinical presentation and outcomes. Type 1 diabetes is caused by immune-mediated β-cell destruction leading to insulin deficiency and a life-long insulin requirement while type 2 diabetes is characterized by insulin resistance in skeletal muscle, liver, and adipose tissues with a failure of β-cell compensation and a relative insulin deficiency (4). The occurrence of type 2 diabetes in youth has been documented in several studies over the past decade (5-7) and is thought to be secondary to coincident increases in obesity in the general population. In addition, there are multiple less common types of diabetes in youth such as monogenic forms, including Maturity Onset Diabetes in the Young (MODY), neonatal diabetes and other known genetic disorders (8, 9).

There are few recent studies of the prevalence of diabetes in youth in the U.S. by diabetes type. Most of the prior registries active in the US were initially focused on type 1 diabetes (10, 11), and have only recently begun to include type 2 diabetes (12, 13). The SEARCH for Diabetes in Youth Study (SEARCH), with centers located in multiple states across the United States (14), was developed to assess the prevalence and incidence of diabetes in youth, overall and by type. Surveillance of youth with diabetes began in 2001 and is ongoing for incident case ascertainment, while prevalence surveillance was conducted for calendar years 2001, which was published previously (15), and 2009. The purposes of this manuscript are to report the prevalence of diabetes in 2009, overall and by diabetes type, age, sex, and race/ethnicity, and to
apply these estimates to U.S. census data for youth under age 20 years to estimate the total burden (absolute number) of youth with diabetes in the U.S. in 2009.

RESEARCH DESIGN AND METHODS
A detailed description of the SEARCH for Diabetes in Youth Study was published previously (14). Physician-diagnosed diabetes was identified in five SEARCH sites in California, Colorado, Ohio, South Carolina and Washington. Four of these sites were geographically-based; Colorado (14 counties), Ohio (8 counties), South Carolina (4 counties) and Washington (5 counties). The California site comprised health plan enrollees in Kaiser Permanente Southern California (KPSC, 7 counties). Coordinated by the Colorado site, SEARCH also collected data from American Indians on selected reservations in Arizona and New Mexico. All centers had active surveillance by endocrinologists (pediatric and adult), other health care providers, hospitals, community health centers, health plan databases and previously-established diabetes databases. The Indian Health Service (IHS) beneficiary roll was used to identify the reservation-based American Indian youth. Two-source capture-recapture in the geographically-based centers was used to estimate the completeness of case identification (16, 17). Capture-recapture was not conducted for the membership-based center because the data sources used to ascertain cases within the membership-based center were not independent.

SEARCH study participants or their parent/guardian completed a survey that recorded age, date of diagnosis, sex, self-reported race/ethnicity and place of residence. The study was reviewed and approved by the institutional review board(s) at each center and complied with the privacy rules established by the Health Insurance Portability and Accountability Act (HIPAA). Because
this registry attempts to identify 100% of cases, case identification was conducted with an approved HIPAA consent waiver in most study locations.

Sources of case reports included physician reports, medical record review or self-report. Cases were considered valid if the medical record indicated a physician diagnosis, the diagnosis was verified directly by a physician, the participant was referred directly from a physician or the case was included in a diabetes database that had required physician verification while eligibility was based on age and area of residence. Clinical diabetes type was determined by the physician and categorized by the study as type 1 (type 1, type 1a, type 1b), type 2, or other (including other, hybrid, monogenic diabetes, secondary diabetes, unknown, missing type). Cases of gestational diabetes mellitus were not included in the study. All cases were registered anonymously with the coordinating center at Wake Forest University and included in this report if they were registered by October 31, 2011.

The numerator for this analysis included all cases prevalent in 2009 that were aged < 20 years on December 31, 2009, lived in one of the included geographic areas or were a member of the KPSC Health Plan or included on the IHS rolls, and not on active military duty or living in an institution. Race/ethnicity, which was by self-report or extracted from the medical record for 97.3% and estimated using geocoding for 2.7% (18, 19), was classified as non-Hispanic White (NHW), non-Hispanic Black (Black), Hispanic, Asian/Pacific Islander (ASPI) or American Indian/Alaskan Native (AIAN).
The denominator included youth less than 20 years of age on December 31, 2009 who were non-institutionalized civilian residents of the study areas covered by the geographic centers or who were members of KPSC residing in 7 counties, or who were enrolled IHS members in 2009. Derivation of the appropriate denominators was a multi-step process taking into account racial/ethnicity categorization and the civilian nature of the study population (15).

For the 4 geographic centers, age- sex- and race/ethnicity-specific denominators were determined using the 2009 bridged-race intercensal population estimates released in October 2012 by the National Center for Health Statistics (NCHS) (18) and pooled across centers. The five racial/ethnic groups listed above were used. The race-bridging methods developed by the NCHS were applied to determine the probability that a multiracial youth belongs to each of the four remaining racial/ethnic groups after excluding the Hispanics (19). For the KPSC population, addresses of all members eligible for inclusion in the study based on age and geographic location were geocoded to the census block level. For each geocoded address, the number of residents of each group living in that block was estimated using Census file SF1 Table P8. The race and ethnic-specific proportions were then applied to the sex-specific denominator estimates in one-year age increments to estimate the racial and ethnic composition of youth by age and sex. As with the geographic based centers, race-bridging methods were used. For AIAN, denominators were based on the IHS user population, defined as at least one IHS visit in the previous three years.

To derive civilian population denominators for the geographic centers, denominators for the youth aged 17 through 19 were adjusted by subtracting the age-, sex-, racial/ethnic-, and county-
specific number of active duty military personnel derived from the information from the Military Family Resource Center (www.mfrc.org) and the Census Bureau. Racial/ethnic-specific denominator estimates were subsequently pooled across all SEARCH centers.

Statistical Methods: The prevalence of diabetes was expressed per 1000 youth using data pooled across all SEARCH centers. The 95% confidence intervals (CI) were calculated using the skew-corrected inverted score test assuming a binomial distribution (20, 21). To obtain an estimate of the total number of youth less than 20 years of age with physician-diagnosed diabetes in the U.S. population, age-, sex- and racial/ethnic-specific U.S. prevalence estimates derived from SEARCH were applied to the age-, sex- and racial/ethnic-specific U.S. population on the basis of 2009 census population estimates. For the purposes of presentation, the standardized rates by race/ethnicity and 4-age groups are shown.

RESULTS

A total of 7,695 youth aged < 20 years with diabetes of all types was identified from a population of 3,458,974 youth (Table 1) for a crude prevalence of 2.22 cases per 1000 (95% CI=2.18 to 2.27). Total diabetes prevalence increased with age group from 0.30/1000 (0.26 to 0.33) in those aged less than 5 years to 4.03/1000 (3.90 to 4.16) among those aged 15-19 years. Prevalence was highest in NHW youth (2.70 [2.62-2.77] cases/1000) and lowest in ASPI youth (0.80 [0.70-0.92] cases/1000). Females had a slightly higher prevalence (2.30 cases/1000 [2.23-2.37]) than males (2.16 cases/1000 [2.09-2.23]). Of the 7,695 youth with diabetes, 7,505 (97.5%) were identified as having either type 1 or type 2 diabetes. Of the remaining 190 (2.5%), 127 had secondary diabetes and 63 had other or unknown type. These cases with a type other
than type 1 or type 2 diabetes or with missing information on type represented a prevalence of 0.05 (0.05-0.06) cases/1000 (data not shown) and are excluded from results that follow.

Table 2 shows the prevalence for type 1 diabetes and type 2 diabetes overall and by race/ethnicity. The prevalence of type 1 diabetes was 1.93 (1.88-1.97) cases/1000 and of type 2 diabetes was 0.24 (0.23-0.26) cases/1000. Type 1 diabetes prevalence was highest in NHW youth and lowest in AIAN. Conversely, type 2 diabetes prevalence was higher in youth from minority race/ethnic groups than in NHW youth. Among the 15 to 19 year old AIAN, type 2 diabetes accounted for 80.0% of all cases (Figure 1). Figure 2 shows the age-specific prevalence by race/ethnicity and type. Prevalence rose with increasing age in all race/ethnic groups and was highest in the oldest age groups except that in AIAN the prevalence of type 1 diabetes was highest at age 10 to 14 years. The mean age of onset was 8.1 years for type 1 diabetes and 13.7 years for type 2 diabetes among youth diagnosed with diabetes before 20 years of age.

The completeness of case ascertainment for type 1 diabetes in the four geographic centers was 99.3% (99.2 - 99.5%) and was similar by race/ethnicity and by age group. For type 2 diabetes, where capture recapture was restricted to ages 10-19 due to small numbers under age 10 years, completeness was slightly lower at 96.1% (94.6-97.6%), and similar by race/ethnicity except for Hispanic youth, where it was 90.0% (88.0-92.0%).

Based on SEARCH derived prevalence, an estimated 191,986 youth with diabetes under age 20 years lived in the U.S. in 2009, including 166,984 with type 1 and 20,262 with type 2 diabetes
(Table 3). There were an estimated 4,740 secondary, other and unknown type of diabetes in the US in 2009, or 2.5% of all cases identified.

CONCLUSIONS

Based on data from SEARCH, the largest, most comprehensive surveillance study of diabetes in U.S. youth to date, over 190,000 youth in the U.S. were estimated to have physician-diagnosed diabetes in 2009. This represents approximately 1 of every 433 of the approximately 83.3 million youth under the age of 20 years. This represents an overall increase in the number of estimated cases of diabetes of 42,357 between our previously published estimates for 2001 (15) and 2009. The increase in the number of cases was primarily driven by an increase in type 1 diabetes, which increased among all race/ethnic groups.

Diabetes is one of the leading chronic diseases in youth; by our estimate affecting 2.22 per 1000 youth under the age of 20 years. Diabetes has a major impact on public health in this country costing about $245 billion in 2012 and shortening life expectancy for those affected at young ages (22). The highest net value of future lost earnings due to premature death are for youth < 18 years of age and for young adults between 18 and 34 years of age. The development of complications is related to the duration of diabetes, and youth with onset of diabetes early in life represent a population at high risk for developing these complications (23).

Comparisons of prevalence data may be subject to considerable bias, since prevalence is determined not only by disease incidence, but also by case survival, which may vary across populations. Prevalence data, however, are useful in determining the public health impact of
diabetes. In 2011/2012, data from the National Survey of Children’s Health (24), based on parental self-report, estimated the prevalence of all types of diabetes among NHW youth under age 18 years to be 4.0 cases/1000, 2.0/1000 for Hispanics, 4.0/1000 for Blacks and 1.0/1000 for other race/ethnic groups. This is similar to our estimate for Hispanics (1.73/1000), but is higher than our estimate for NHW (2.70/1000) and Black youth (2.28/1000). However, those data are based on self-report and likely to be less reliable than the validated SEARCH data. A recent Canadian report on data from 2008/2009 suggests somewhat higher prevalence of diabetes in Canada at 2.0/1000 for age 1-9 and 5.0/1000 for age 10-19 (25).

Estimates of the prevalence of diabetes by type have also been reported from the US state of South Carolina (26), and the Canadian province of Manitoba (27). In 1999, type 1 diabetes prevalence in South Carolina NHWs was 1.1/1000 at ages 0-9 years, and 2.5/1000 among 10-19 year olds, somewhat lower than our results. In Manitoba from 1985-93, prevalence of type 1 diabetes among NHW youth was 0.2/1000 (age 0-4), 1.1/1000 (age 5-9) and 2.4/1000 (age 10-14), also lower than we report, likely due to rising rates of type 1 diabetes.

Type 2 diabetes occurred in youth from all race/ethnic groups in the SEARCH cohort. The proportion of type 2 diabetes was lowest in NHW but still represented 3.5% of all cases of diabetes in NHW youth. Studies of largely Caucasian youth in Germany, France and the UK (28-30) indicate that type 2 diabetes remains rare. The overall burden of diabetes due to type 2 diabetes in SEARCH increased with age group in all race/ethnic groups and, among 15-19 year olds, type 2 diabetes was more common than type 1 diabetes among AIAN youth. These
prevalence figures, while estimating the current burden of diabetes by type, do not reflect any changes in proportion of diabetes types, which can only be estimated from incidence rates.

The prevalence of type 2 diabetes has been reported in other studies largely in minority populations. In Puerto Rican Hispanics, prevalence was 0.2/1000 from age 10-19 years (31). The differentiation between type 1 diabetes and type 2 diabetes was based only on the use of insulin, likely underestimating the type 2 diabetes prevalence, as many youth with type 2 diabetes are also treated with insulin (32). The total prevalence of diabetes (any type) was 0.05/1000 among over 4,000 adolescents completing self-report information; 44% of these cases were classified as type 2 diabetes, implying a prevalence of 0.02/1000, much lower than the 0.24/1000 that we report. Possible factors contributing to differences in prevalence between studies include methods of ascertainment and ancestral region of the Hispanic population. In SEARCH for Diabetes in Youth, the majority of Hispanic participants’ families are of Mexican ancestry, rather than Caribbean (33) which would be likely in a sample from Puerto Rico.

There are several reports of type 2 diabetes prevalence in American Indian or First Nations, Canadian populations. Prevalence in American Indians residing in Montana, assessed using medical record review, was 3.5/1000 (age 10-14 years) but only 0.8/1000 in youth aged 15-19 years (34). In First Nations youth in Canada aged 5-14 years, prevalence was 7.7/1000 (35), and was 13.0/1000 among Oklahoma Cherokees aged 10-19 years who underwent screening (36). Among Pima Indians, who have undergone systematic oral glucose tolerance testing for many years, the prevalence in 1987-96 was 38/1000 among males aged 15-19 and was 53/1000 among females (37), rates much higher than observed in the American Indian populations in SEARCH,
and the highest in the world. AIAN youth have the highest prevalence of type 2 diabetes of any race/ethnic group.

There are some limitations to this study. SEARCH relies on physician diagnosis of diabetes, identifying only clinically recognized cases reported to or directly identified by SEARCH sites, so undiagnosed cases are not included in these prevalence estimates. For type 1 diabetes, the number of undiagnosed cases is likely very small, but type 2 diabetes, at least in adults, can exist for an extended period of time prior to diagnosis. However, there is very little undiagnosed diabetes in youth (38). Some older youth diagnosed with type 2 diabetes might not be seeing a physician who is aware of the SEARCH study, therefore leading to an under-estimation of prevalence in the older age group. However, this is likely to have only slight impact based on our capture-recapture estimates. Denominator estimates were based on US Census estimates of the population in 2009 but corrected for 2010 census results; however race/ethnicity was geocoded for 2.7% of cases using 2010 census data, likely resulting in some race/ethnicity misclassifications. Also, the number of AIAN youth was small, was primarily from IHS rolls in the Southwest, and may not be representative of AIAN youth from other parts of the country or those not utilizing the IHS. In-person study visits were not conducted on 2009 prevalent cases, so presence of diabetes autoantibodies and details of medication use, obesity, and other risk factors are not available. However, previous SEARCH data demonstrated that provider assessment of diabetes type is a valid assessment of etiologic diabetes type (39). The number of participating sites in SEARCH has changed since 2001 when the first comprehensive prevalence survey was conducted (15). A detailed comparison of changes in prevalence, by diabetes type, between 2001 and 2009 taking into account the reduced number of sites will be published
separately. Also, as case ascertainment was based on site/regional networks, some youth may not have been identified, particularly those who are older. Thus, the estimated prevalence presented in this paper is more likely to be an under-estimate in the upper age group and this may explain the difference between these data and the higher prevalence observed in older Canadian youth.

This study also has important strengths. The population under surveillance by the SEARCH sites (~3.5 million) has a similar distribution of important sociodemographic factors (e.g. race/ethnicity, parental education, income) to the US population as a whole, suggesting that SEARCH is a representative sample of US youth at risk for diabetes (supplemental table 1). Thus, these prevalence estimates should be an accurate representation of the true number of diagnosed cases in the study areas. This is also the largest such study of diabetes in youth in the US, making the estimates for the numbers of cases reasonably precise. The paucity of data on the prevalence of type 1 diabetes in contemporary cohorts of youth make the contribution of the SEARCH study particularly valuable.

In conclusion, the burden of diabetes in US youth <20 years of age in 2009 is estimated to be 191,986. Of these, 166,984 have type 1 diabetes and 20,262 have type 2 diabetes. The burden of type 1 diabetes is highest among non-Hispanic white youth, and is highest for type 2 diabetes in minority youth, especially AIAN youth. Efforts are needed both to provide care for youth living with either type 1 diabetes or type 2 diabetes and to reduce the risk for development of diabetes and diabetes-related complications in high-risk populations.
Author Contributions:
D.P. guarantor of work co-developed and co-wrote manuscript. J.T. conducted the analyses.
D.D. (study co-chair) obtained funding, contributed to discussions and edited manuscript. J.D. supervised analyses and edited manuscript. G.I. contributed to discussions and edited manuscript. J.L. obtained funding, contributed to discussions and edited manuscript. A.L. contributed to discussions and edited manuscript. B.L. contributed to discussions and edited manuscript. E.M-D. (study co-chair) obtained funding, contributed to discussions and edited manuscript. C.P. obtained funding, contributed to discussions, and edited manuscript. S.S. contributed to discussion and edited manuscript. D.S. contributed to discussion, edited manuscript and collected data. R.H. co-developed and co-wrote manuscript.

David J. Pettitt, as the guarantor of this work, takes full responsibility for the contents of the article. No potential conflicts of interest relevant to this article were reported.

Acknowledgments: The SEARCH for Diabetes in Youth Study is indebted to the many youth and their families, and their health care providers, whose participation made this study possible.

Grant Support: SEARCH for Diabetes in Youth is funded by the Centers for Disease Control and Prevention (PA numbers 00097, DP-05-069, and DP-10-001) and supported by the National Institute of Diabetes and Digestive and Kidney Diseases.

Site Contract Numbers: Kaiser Permanente Southern California (U48/CCU919219, U01 DP000246, and U18DP002714), University of Colorado Denver (U48/CCU819241-3, U01 DP000247, and U18DP000247-06A1), Children’s Hospital Medical Center (Cincinnati) (U48/CCU519239, U01 DP000248, and 1U18DP002709), University of North Carolina at Chapel Hill (U48/CCU419249, U01 DP000254, and U18DP002708-01), University of Washington School of Medicine (U58/CCU019235-4, U01 DP000244, and U18DP002710-01), Wake Forest University School of Medicine (U48/CCU919219, U01 DP000250, and 200-2010-35171).
The authors wish to acknowledge the involvement of General Clinical Research Centers (GCRC) at the South Carolina Clinical & Translational Research (SCTR) Institute, at the Medical University of South Carolina (NIH/NCRR Grant number UL1RR029882); Children’s Hospital and Regional Medical Center (Grant Number M01RR00037); Colorado Pediatric General Clinical Research Center (Grant Number M01 RR00069) and the Barbara Davis Center at the University of Colorado at Denver (DERC NIH P30 DK57516); and the Institutional Clinical and Translational Science Award (CTSA), NIH/NCRR at the University of Cincinnati (Grant Number 1UL1RR026314-01); and the Children with Medical Handicaps program managed by the Ohio Department of Health.

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention and the National Institute of Diabetes and Digestive and Kidney Diseases.

References:

Figure Legends:

Figure 1. Proportion of type 1 and type 2 diabetes among 15-19 year olds in the SEARCH for Diabetes in Youth Study by race/ethnicity. NHW=Non-Hispanic White; ASPI=Asian/Pacific Islander; AIAN=American Indian/Alaskan Native. Diabetes type=other/unknown not included in figure.

Figure 2. Prevalence of diabetes in the SEARCH for Diabetes in Youth Study per 1000 by type, age group and race/ethnicity. NHW=Non-Hispanic White; ASPI=Asian/Pacific Islander; AIAN=American Indian/Alaskan Native. Diabetes type=other/secondary/unknown not included in figure. Error bars represent 95% CI.
Table 1.
Prevalence of Diabetes (All types) in the SEARCH for Diabetes in Youth Study by Age, Race/Ethnicity, and Sex, 2009

<table>
<thead>
<tr>
<th></th>
<th>No. of cases</th>
<th>Denominator</th>
<th>Prevalence/1000 (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>7,695</td>
<td>3,458,974</td>
<td>2.22 (2.18-2.27)</td>
</tr>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>246</td>
<td>832,791</td>
<td>0.30 (0.26-0.33)</td>
</tr>
<tr>
<td>5-9</td>
<td>1,184</td>
<td>844,923</td>
<td>1.40 (1.32-1.48)</td>
</tr>
<tr>
<td>10-14</td>
<td>2,580</td>
<td>867,403</td>
<td>2.97 (2.86-3.09)</td>
</tr>
<tr>
<td>15-19</td>
<td>3,685</td>
<td>913,857</td>
<td>4.03 (3.90-4.16)</td>
</tr>
<tr>
<td>Race/Ethnicity*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NHW</td>
<td>5,085</td>
<td>1,885,451</td>
<td>2.70 (2.62-2.77)</td>
</tr>
<tr>
<td>Black</td>
<td>872</td>
<td>383,198</td>
<td>2.28 (2.13-2.43)</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1,403</td>
<td>809,267</td>
<td>1.73 (1.65-1.83)</td>
</tr>
<tr>
<td>ASPI</td>
<td>210</td>
<td>260,846</td>
<td>0.80 (0.70-0.92)</td>
</tr>
<tr>
<td>AIAN</td>
<td>126</td>
<td>120,212</td>
<td>1.05 (0.88-1.24)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>3,886</td>
<td>1,692,112</td>
<td>2.30 (2.23-2.37)</td>
</tr>
<tr>
<td>M</td>
<td>3,809</td>
<td>1,766,862</td>
<td>2.16 (2.09-2.23)</td>
</tr>
</tbody>
</table>

* NHW=Non-Hispanic White; ASPI=Asian/Pacific Islander; AIAN=American Indian/Alaskan Native.
Table 2. Estimates of prevalence in the SEARCH for Diabetes in Youth Study (per 1000) of diabetes mellitus according to diabetes type, and race/ethnicity, 2009*

<table>
<thead>
<tr>
<th>Race/ethnicity</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Denominator</td>
<td>Number of cases</td>
</tr>
<tr>
<td>NHW</td>
<td>1,885,451</td>
<td>4,804</td>
</tr>
<tr>
<td>Black</td>
<td>383,198</td>
<td>626</td>
</tr>
<tr>
<td>Hispanic</td>
<td>809,267</td>
<td>1,040</td>
</tr>
<tr>
<td>ASPI</td>
<td>260,846</td>
<td>156</td>
</tr>
<tr>
<td>AIAN</td>
<td>120,212</td>
<td>42</td>
</tr>
<tr>
<td>Total</td>
<td>3,458,974</td>
<td>6,668</td>
</tr>
</tbody>
</table>

*Note: there were 190 secondary, other, unknown cases excluded from table 2 that are included in table 1.

†NHW=Non-Hispanic White; ASPI=Asian/Pacific Islander; AIAN=American Indian/Alaskan Native.
Table 3.
Estimated Number of Youth with Diabetes in the United States by Age Group, Race/Ethnicity, and Type, 2009

<table>
<thead>
<tr>
<th>Race/Ethnicity</th>
<th>Age 0-4</th>
<th></th>
<th>Age 5-9</th>
<th></th>
<th>Age 10-14</th>
<th></th>
<th>Age 15-19</th>
<th></th>
<th>Total</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NHW*</td>
<td>4,192</td>
<td>0</td>
<td>20,317</td>
<td>85</td>
<td>40,866</td>
<td>1,152</td>
<td>54,812</td>
<td>3,187</td>
<td>119,387</td>
<td>4,364</td>
</tr>
<tr>
<td>Black</td>
<td>582</td>
<td>0</td>
<td>3,633</td>
<td>232</td>
<td>7,725</td>
<td>1,542</td>
<td>9,271</td>
<td>5,585</td>
<td>20,887</td>
<td>7,152</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1,028</td>
<td>0</td>
<td>3,917</td>
<td>125</td>
<td>8,517</td>
<td>1,733</td>
<td>9,740</td>
<td>5,289</td>
<td>23,915</td>
<td>7,427</td>
</tr>
<tr>
<td>ASPI*</td>
<td>168</td>
<td>0</td>
<td>481</td>
<td>49</td>
<td>832</td>
<td>205</td>
<td>973</td>
<td>506</td>
<td>2,493</td>
<td>779</td>
</tr>
<tr>
<td>AIAN*</td>
<td>5</td>
<td>0</td>
<td>59</td>
<td>1</td>
<td>128</td>
<td>97</td>
<td>110</td>
<td>438</td>
<td>303</td>
<td>540</td>
</tr>
<tr>
<td>Total</td>
<td>5,975</td>
<td>0</td>
<td>28,408</td>
<td>491</td>
<td>58,069</td>
<td>4,729</td>
<td>74,905</td>
<td>15,006</td>
<td>166,984</td>
<td>20,262</td>
</tr>
</tbody>
</table>

There was an estimated 4740 secondary, other and unknown type of diabetes in the US in 2009, or 2.5% of all cases identified, resulting in an estimate of 191,986 persons with diabetes of all types in 2009.

* NHW=Non-Hispanic White; ASPI=Asian/Pacific Islander; AIAN=American Indian/Alaskan Native
Figure 1.

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Type 1</th>
<th>Type 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NHW</td>
<td>5.5</td>
<td>94.5</td>
</tr>
<tr>
<td>Black</td>
<td>37.6</td>
<td>62.4</td>
</tr>
<tr>
<td>Hispanic</td>
<td>35.2</td>
<td>64.8</td>
</tr>
<tr>
<td>ASPI</td>
<td>34.2</td>
<td>65.8</td>
</tr>
<tr>
<td>AIAN</td>
<td></td>
<td>20.0</td>
</tr>
</tbody>
</table>

NHW=non-Hispanic White, Black=African American, Hispanic=Hispanic American, ASPI=Asian/Pacific Islander, AIAN=American Indian/Alaskan Native
Figure 2.

Type 1

Type 2

Prevalence (per/1,000)

Age Group (years)

NHW
Black
Hispanic
ASPI
AIAN
Prevalence of Diabetes Mellitus in U.S. Youth in 2009: The SEARCH for Diabetes in Youth Study.

The writing group for this manuscript wishes to acknowledge the contributions of the following individuals to the SEARCH for Diabetes in Youth Study:

California: Jean M. Lawrence, ScD, MPH, MSSA, Kristi Reynolds, PhD, MPH, Jin-Wen Hsu, PhD, Mary Helen Black, PhD, Kim Holmquist, BA, and Harpreet S. Takhar, MPH, for the Department of Research & Evaluation and Ann K. Kershner, MD for the Department of Pediatrics, Kaiser Permanente Southern California; and David J. Pettitt, MD, for the Sansum Diabetes Research Institute

Colorado: Dana Dabelea, MD, PhD, Richard F. Hamman, MD, DrPH, Lisa Testaverde, MS, for the Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Georgeanna J. Klingensmith, MD, Marian J. Rewers, MD, PhD, David Maahs, MD and Paul Wadwa, MD for the Barbara Davis Center for Childhood Diabetes, Stephen Daniels, MD, PhD, Kristen Nadeau, MD, Department of Pediatrics and Children’s Hospital, Clifford A. Bloch, MD, for the Pediatric Endocrine Associates, Carmelita Sorrelman, MSPH, Alfreda Beartrack, MSPH for the Navajo Area Indian Health Prevention Program

Ohio: Lawrence M. Dolan, MD, Michael Seid, PhD, Elaine Urbina, MD, MS, Debra A. Standiford, MSN, CNP for the Cincinnati Children’s Hospital Medical Center

Carolina: Elizabeth J. Mayer-Davis, PhD, Joan Thomas MS, RD for the University of North Carolina, Chapel Hill, Anwar Merchant, ScD, Angela D. Liese, PhD, MPH, Robert R. Moran, PhD, Gladys Gaillard-McBride, RN, CFNP, Deborah Lawler, MT (ASCP), Malaka Jackson, MD for the University of South Carolina, Deborah Bowlby, MD, for the Medical University of South Carolina, James Amrhein, MD, for Greenville Hospital Systems, Pam Clark, MD for McLeod Pediatric Subspecialists, Mark Parker, MD for Pediatric Endocrinology & Diabetes Specialists, Charlotte, NC

Washington: Catherine Pihoker, MD, Maryam Afkarian, MD, Angela Badaru, MD, Lisa Gilliam, MD, PhD, Irl Hirsch, MD, Lenna L. Liu, MD, MPH, John Neff, MD, and Joyce Yi-Frazier, PhD for the University of Washington, Beth Loots, MPH, MSW, Rebecca O’Connor, RN, Sue Kearns, RN, Mary Klingsheim, RN, Emil Buscaino, BS, Katherine Cochrane, BS, Onel Martinez, MS, and Sharla Semana, BS, for Seattle Children’s Hospital, and Carla Greenbaum, MD for Benaroya Research Institute
Centers for Disease Control and Prevention: Giuseppina Imperatore, MD, PhD, Desmond E. Williams, MD, PhD, Henry S. Kahn, MD, Bernice Moore, MBA, Gregg W. Edward, PhD, Sharon H. Saydah, PhD

National Institute of Diabetes and Digestive and Kidney Diseases, NIH: Barbara Linder, MD, PhD

Central Laboratory: Santica M. Marcovina, PhD, ScD, Vinod P. Gaur, PhD, and Jessica Harting for the University of Washington Northwest Lipid Research Laboratories

Coordinating Center: Ronny Bell, PhD, MS, Ralph D’Agostino, Jr., PhD, Douglas Case, PhD, Jasmin Divers, PhD, Timothy Morgan, PhD, Daniel Beavers, PhD, Leora Henkin, MPH, MEd, Susan Moxley, BS, Gena Hargis, MPH, Donna Kronner, Maureen T. Goldstein, BA, Andrea Anderson, MS, Jeanette Andrews, MS, Abigail Lauer, MS, Scott Isom, MS, Jennifer Talton, MS for Wake Forest School of Medicine
Supplemental Table 1. Representativeness of SEARCH 2009 Prevalence Denominators Compared with the 2010 United States Census: The SEARCH for Diabetes in Youth Study

<table>
<thead>
<tr>
<th>Race/ethnicity†</th>
<th>U.S. 2010 N (%)</th>
<th>SEARCH 2009 prevalence population* N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic (regardless of race)</td>
<td>50,477,594 (16.35)</td>
<td>2,340,785 (18.81)</td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>196,817,552 (63.75)</td>
<td>7,689,947 (61.81)</td>
</tr>
<tr>
<td>Non-Hispanic Black</td>
<td>37,685,848 (12.21)</td>
<td>1,051,643 (8.45)</td>
</tr>
<tr>
<td>Non-Hispanic American Indian</td>
<td>2,247,098 (0.73)</td>
<td>64,840 (0.52)</td>
</tr>
<tr>
<td>Non-Hispanic Asian, Hawaiian/Pacific Islander</td>
<td>14,946,700 (4.84)</td>
<td>934,989 (7.51)</td>
</tr>
<tr>
<td>Non-Hispanic Some other Race</td>
<td>604,265 (0.20)</td>
<td>23,256 (0.19)</td>
</tr>
<tr>
<td>Non-Hispanic Two or More Races</td>
<td>5,966,481 (1.93)</td>
<td>336,406 (2.70)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age‡‡</th>
<th>U.S. 2010</th>
<th>SEARCH 2009 prevalence population*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>20,201,362 (6.54)</td>
<td>836,875 (6.73)</td>
</tr>
<tr>
<td>5-9</td>
<td>20,348,657 (6.59)</td>
<td>832,352 (6.69)</td>
</tr>
<tr>
<td>10-14</td>
<td>20,677,194 (6.70)</td>
<td>832,973 (6.69)</td>
</tr>
<tr>
<td>15-19</td>
<td>22,040,343 (7.14)</td>
<td>873,940 (7.02)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Education.§, % (for adults > 25 yrs)</th>
<th>U.S. 2010</th>
<th>SEARCH 2009 prevalence population*</th>
</tr>
</thead>
<tbody>
<tr>
<td>< High school graduate</td>
<td>14.91</td>
<td>13.00</td>
</tr>
<tr>
<td>High school graduate</td>
<td>29.03</td>
<td>23.92</td>
</tr>
<tr>
<td>Some college</td>
<td>28.13</td>
<td>29.69</td>
</tr>
<tr>
<td>> Bachelor’s degree</td>
<td>27.93</td>
<td>33.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Income§</th>
<th>U.S. 2010</th>
<th>SEARCH 2009 prevalence population*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Household Income (US $)</td>
<td>51,914</td>
<td>60,129</td>
</tr>
<tr>
<td>Median Family Income (US $)</td>
<td>62,982</td>
<td>72,292</td>
</tr>
</tbody>
</table>

*Data are from 2010, but we are using the prevalence areas defined by SEARCH in 2009

†Data are from 2010, using Summary File 1 (SF1)

‡‡Age categories are only shown for those < 20 years, which is why they don’t add up to 100%

§Data are based on 5-year estimates from 2010 American Community Survey (ACS)