Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men

Kyriakoula Marinou MD PhD1,2, Leanne Hodson PhD1, Senthil K Vasan MD PhD1,3, Barbara A Fielding PhD1,4, Rajarshi Banerjee MD5, Kerstin Brismar MD PhD3, Michael Koutsilieris PhD2, Anne Clark PhD1, Matt J Neville PhD1,6, Fredrik Karpe MD PhD1,6

1 Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Radcliffe Department of Medicine, University of Oxford, Oxford, UK

2 Department of Experimental Physiology, Athens University School of Medicine, Greece

3 Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden

4 Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK

5 Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, UK

6 National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford, UK

\textbf{Running title:} Abdominal fat layers and cardiometabolic risk,

\textbf{Word count:} Abstract:249, Text: 4005, Figures/Tables:4, References: 40; Data Supplement available

\textbf{Corresponding Author:} Professor Fredrik Karpe

Oxford Centre for Diabetes Endocrinology and Metabolism

Churchill Hospital, Oxford OX3 7LE, Tel: +44 1865 857222/ Fax: +44 1865 857213,

\textit{Email: Fredrik.Karpe@ocdem.ox.ac.uk}
Abstract

Objectives. Fat distribution is an important variable explaining metabolic heterogeneity of obesity. Abdominal subcutaneous adipose tissue (SAT) is divided by the Scarpa’s fascia into a deep (dSAT) and a superficial (sSAT) layer. This study sought to characterize functional differences between the two SAT layers to explore their relative contribution to metabolic traits and cardiovascular risk profile.

Research design and Methods. We recruited 271 Caucasians consecutively from a local random and population-based screening project in Oxford and 25 Asian Indians from the local community. The depth of the SAT layers was determined by ultrasound and adipose tissue biopsies were performed under ultrasound guidance in a subgroup of 43 Caucasians. Visceral adipose tissue mass was quantified by DEXA scan.

Results. Male adiposity in both ethnic groups was characterized by a disproportionate expansion of dSAT which was strongly correlated with visceral adipose tissue mass. dSAT depth was a strong predictor of global insulin resistance (HOMA-IR), liver-specific IR (Insulin-like growth factor binding protein-1) and Framingham Risk Score independently of other measures of adiposity in men. Moreover, dSAT had higher expression of proinflammatory, lipogenic and lipolytic genes and contained higher proportions of saturated FAs. There was increased proportion of small adipocytes in dSAT.

Conclusions. SAT is heterogeneous; dSAT expands disproportionally more than sSAT with increasing obesity in Caucasian males (confirmed also in Asian Indians). Its expansion is related to increased cardiovascular risk independently of other adiposity measures and it has biological properties suggestive of higher metabolic activity contributing to global IR.
Key words: risk factors, cardiovascular risk, diabetes, superficial subcutaneous fat, deep subcutaneous fat, imaging, fatty acids, inflammation, adipose tissue, obesity
Abdominal obesity is associated with the development of insulin resistance (IR), type 2 diabetes and coronary heart disease (CHD) (1). The classical abdominal adipose tissue (AT) compartmentalization into subcutaneous (SAT) and visceral AT (VAT) has been widely studied in relation to obesity related complications (2-4). The anatomical distinction of SAT compartments into superficial (sSAT) and deep SAT (dSAT), divided by Scarpa’s fascia is well documented in literature (5-9). A few studies have shown that dSAT is strongly related to IR in a manner nearly identical to that of VAT, while sSAT follows the pattern of lower body SAT (1; 10). Of note, Golan et al. (11) recently demonstrated that sSAT was a protective fat depot in patients with type 2 diabetes.

The sSAT layer is organised in compact fascial septa orientated perpendicular to the skin with the lobules being small and ovoid, whereas the dSAT layer contains larger lobules, less organized and widely spaced Scarpa’s fascia septa (5; 12-14). Studies in pigs suggest that the SAT layers have different embryological origin and that the deeper layer expands during weight gain (1; 15). The situation in humans is less clear.

Importantly, fat distribution differs between males and females, and this has been related to differences in both cardiovascular and diabetes risk profile between genders (3; 16-18).

The current cross-sectional study was undertaken with three primary objectives 1) to identify the depth of the different SAT layers by a novel and simple technique using ultrasound (US) imaging, validated against Magnetic Resonance imaging (MRI) and Dual energy X-Ray Absorptiometry (DEXA) in healthy volunteers within a wide variety of adiposity; 2) to confirm the differences between sSAT and dSAT and their relation with metabolic markers associated with IR and cardiometabolic risk 3) to characterize the biological differences between sSAT and dSAT by evaluating whether there are structural differences in the SAT layers, differences in
gene expression and fatty acid (FA) profiles. We hypothesized that dSAT is morphologically and biologically different than sSAT, with the deep layer having a more proinflammatory, lipogenic and lipolytic profile. We also hypothesised that the relative expansion of dSAT against sSAT layer, as quantified by US, may be a superior index than body mass index (BMI) and waist circumference (WC) to characterize cardiovascular and diabetes risk.

Research Design and Methods

Clinical protocol.

The study participants were enrolled consecutively from a random and population-based screening project of Caucasian residents in Oxfordshire, the Oxford Biobank (OBB) (www.oxfordbiobank.org.uk) (19). Due to the well-known high diabetes risk and the tendency towards IR, we also included a pilot recruitment of 25 non-diabetic Asian Indian immigrants to the UK, from the local Asian Oxfordshire community (as described below). Then, from the main OBB study cohort we identified 25 Caucasians with identical whole subcutaneous adipose tissue (wSAT), age and gender with the recruited Asians (nested study).

Caucasian cohort: The 371 Caucasian individuals (146 men, 225 women) came to the clinical research unit after an overnight fast. Anthropometric variables were measured, blood samples were taken, and US measurements of the abdomen were made. The distribution of Cardiovascular risk (CVR) was estimated by calculating the Framingham risk score (FRS). The Framingham calculations of 10 years CVR were based on the Third Report of the National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)(2). The study population did not
include any patient with prior diagnosis of CHD. AT biopsies were specifically taken from sSAT and dSAT layers in a sub-set (n=43) of the Caucasian individuals

Asian Indians: The 25 Asian Indian individuals attended the clinical research unit for US characterization of sSAT and dSAT.

The study population recruitment algorithm is presented in supplementary Figure S1.

Study primary end-points: 1) the measurement of the depth of dSAT and sSAT layers by US (linked with all the other study end-points) 2) Gene expression and FA profile of dSAT and sSAT 3) Circulating lipid profile and IR 4) Histological characteristics of dSAT and sSAT

Study secondary endpoints: 1) measurement of dSAT and sSAT by MRI (as means to validate the US measurements), 2) DEXA measurements of abdominal obesity 3) FRS 4) Circulating biomarkers.

The study was approved by the Oxfordshire Clinical Research Ethics Committee, and all volunteers gave written informed consent.

Ultrasonography of SAT. US measurements of the SAT layers were performed using a 7.5 MHz linear array probe and 2D imaging (Philips PDI 5000) in all participants (n=371). Measurements were taken with participants in the supine position, during exhalation phase. All measurements were recorded 5 cm lateral to the umbilicus (a location where the Scarpa’s fascia line is clearly observed) on both sides. The probe was held with 1-2 mm distance from the skin (US gel layer giving contact) to ensure no pressure was put on the abdomen. Two independent measurements were recorded from each side and the final depth of the fat depots was obtained by
the average of all four measurements. The sSAT distance was defined as the region of AT between the Scarpa’s fascia and lower dermis, whereas wSAT was defined as the AT occupying the space between the anterior line of the rectus abdominis muscle and lower dermis. The difference between wSAT and sSAT was defined as dSAT. To evaluate the within-person measurement variability, four measurements taken 10 minutes apart were recorded in 24 subjects (12 males, 12 females) and the intra-observer variability was 0.18% for sSAT, 0.3% for dSAT and 0.06% for wSAT. The intra-class correlation coefficient was 0.99 for wSAT (p<0.0001), 0.98 for dSAT (p<0.0001), and 0.98 for sSAT (p<0.0001).

MRI. SAT measured by US was validated using single slice MRI in 18 Caucasian women. A transverse turbo-spin echo image of the abdomen was acquired at the L4 level in a 3 Tesla MRI scanner (Siemens Tim Trio, Erlangen, Germany). The depth of sSAT and dSAT layers were measured at 5cm either side of the midline, with the skin excluded.

DEXA scan: 225 of the Caucasian participants with US measurements underwent DEXA scanning (GE Health Care Lunar iDexa, with software version 14.1) for quantification of VAT and trunk/android fat mass. The algorithm of the software provides estimates of VAT mass with high accuracy (20).

Biochemical analyses. Biochemical analyses were performed in all 371 of the Caucasian individuals. Plasma glucose, triglycerides (TG), non-esterified fatty acids (NEFA), high sensitivity C-reactive protein (hsCRP), total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein B (ApoB), apolipoprotein A1 (ApoA1) were determined enzymatically using an ILAB 650 Multianalyzer (Instrumentation Laboratory, Warrington, UK). Plasma insulin concentrations were analyzed by
radio-immunoassay (RIA) kits (Linco Research St Charles MO, USA). IR was estimated using homeostatic model assessment (HOMA-IR) (21). Serum Insulin-like Growth Factor Binding Protein 1 (IGFBP-1) concentrations were measured as a separate indicator of liver-specific IR (22), and were determined by RIA (23). Blood pressure (BP) was recorded after 10 min rest by doing 3 consecutive readings (Omron).

Biopsies. These were performed in 43 of the Caucasian Individuals. SAT biopsies (from dSAT and sSAT on the same occasion) were performed under US guidance. After administration of local anesthesia (5-10 ml of 1% lignocaine) a single entry point was made and AT was first obtained from dSAT using a 12-gauge aspiration needle, followed by a biopsy of the sSAT using a different syringe and needle. This technique yielded ~300 mg of fat from each layer. Samples were washed with saline and aliquoted in 4% formalin or in RNA-Later® solution for RNA extraction.

Gene expression studies. The AT biopsy samples were removed from RNA Later® and homogenized in Trizol reagent (24). The lipid layer was removed and stored for fatty acid (FA) analysis, n=22 (25). Total RNA from AT (n=43) was isolated using a Mirvana® miRNA solution kit (Applied Biosystems) as described (24).

The mRNA expression of adiponectin (ADIPOQ), adiponectin receptor 1 (ADIPOR1), adiponectin receptor 2 (ADIPOR2), leptin (LEP), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FASN), fatty acyl elongase-5 and -6, (ELOVL5 and ELOVL6), peroxisome proliferator-activated receptor γ 2 (PPARγ2), interleukin-6 (IL6), monocyte chemotactic protein-1 (MCP1), lipoprotein lipase (LPL), hormone sensitive lipase (LIPE), were quantified by real-time PCR using Taqman gene expression assays (Applied Biosystems) and normalized to the
expression of the three previously validated stable endogenous control transcripts: cyclophilin A (PPIA), phosphoglycerate kinase 1 (PGK1), importin 8 (IPO8) using the ΔΔCt method (24).

Analysis of AT triglyceride FA composition. A sample of 200µl of the lipid layer from the RNA isolation step was used to determine TG FA composition as described (25). FA composition (µmol/100 µmol total FA) was determined by gas chromatography (26).

Cell size analysis. sSAT and dSAT samples were embedded in paraffin and cut in 5 µm sections. Each section was de-waxed and stained with hematoxylin-eosin. The adipocyte size analysis was based on the method of Chen and Fareze, (27), using Adobe Photoshop CS2 9.0.2 (Adobe systems, San Jose, CA, USA) and an image processing tool kit (Reindeer Games, Gainesville, FL, USA). The histological cell sizing was performed by an operator blinded to the origin of the tissue. In order to define the minimum number of cells required for accurate determination of cell size distribution in a sample we took 5 samples and counted 2,500 cells in each. We then removed data by 100 at a time and observed that the coefficient of variation started to increase when less than 100 cells were included in each biopsy. Therefore we included only biopsies with more than 100 cells available for quantification (n=23 pairs).

Statistical analysis. Continuous variables were tested for normal distribution by using Kolmogorov-Smirnov test and a significance level <0.05 was used to reject the null hypothesis of normal distribution. Skewed samples sets were log-transformed prior to statistical analysis, to achieve normal distribution. Comparisons of continuous variables between two groups were performed using an unpaired t-test, while comparisons between the two SAT layers (within the same persons) were performed using a paired t-test. All continuous variables are expressed as means ± SEM unless otherwise stated. For histology studies, cells size distribution between the two SAT layers were compared by using one-way ANOVA followed by paired t-tests for
individual comparisons. Categorical variables were compared using chi-square test, as appropriate. Correlations between continuous variables were assessed using bivariate analysis, and Pearson’s coefficient was estimated. Z score was calculated in order to compare the Pearson’s coefficient. The differences in FRS between groups were compared by using one way ANOVA.

Linear regression analysis of IR was performed using log HOMA-IR as a dependent variable and log (dSAT) and log (WC) as independent variables and results are presented as standardized betas (log(BMI) was not included in the models due to co-linearity with log(WC)). Linear Regression of FRS was performed using FRS as a dependent variable and BMI, dSAT, sSAT and HOMA IR as independent variables. All statistical tests were performed using SPSS v20.0 (USA).

Results

Caucasian participant characteristics including anthropometric variables, blood biochemistry and measures of IR are presented in Table S1.

SAT layers measured using US correlate strongly with SAT measurements using MRI. The sSAT, dSAT and wSAT distances quantified by US correlated with the SAT measurements by MRI (r=0.75 (P<0.0001) for dSAT, r=0.78 (P<0.0001) for sSAT, r=0.85 (p<0.0001) for wSAT.

dSAT distance estimated by US is strongly correlated with DEXA-estimated VAT. We observed that android and trunk mass measured by DEXA in 225 Caucasian individuals, were positively correlated with wSAT (r=0.66, P<0.0001 for android, r=0.60 P<0.0001 for trunk
mass). VAT was most strongly correlated with dSAT \((r=0.73, P<0.0001) \) and to a lesser degree with sSAT \((r=0.44, P<0.0001, z\text{-score } 4.632, P=0.000004) \).

Male adiposity is characterized by a disproportionate increase in dSAT. Although men and women had similar wSAT, men had significantly thicker dSAT and thinner sSAT than women (Figure 1A), while VAT was greater in men (Figure 1B). Accordingly, dSAT: wSAT ratio was significantly greater in men than in women \((0.60\pm0.01 \text{ vs } 0.48\pm0.007, P<0.0001) \). In the study of the South Asian Indian migrants we hypothesized that the dSAT would be proportionally larger in both men and women. We therefore selected controls with the same wSAT depth and compared the dSAT:wSAT ratio between the ethnic groups. There was no obvious difference \((P=0.31 \text{ for dSAT, } P=0.29 \text{ for sSAT}) \).

We then examined the relationships between SAT layers and other anthropometric variables, biochemical characteristics, measures of IR and BP in men and women separately. The ratio of dSAT/wSAT was correlated with BMI, WC, waist to hip ratio (WHR) and wSAT (Table S2) in men. In women, both dSAT and sSAT were similarly expanded in obesity, and the dSAT:wSAT ratio was only weakly correlated with BMI, WC, WHR and wSAT. The correlations between SAT layers and markers of IR, metabolic indices and CVR profile are presented in the data Supplement.

dSAT is related to VAT in men. In males only dSAT was associated with VAT, while in females both layers were associated with VAT (Figure 1C-F).

mRNA expression of inflammatory, lipogenic and lipolytic target genes in the SAT layers. The expression of *ADIPOQ* was similar in the tissues from the two SAT layers, while the expression of *ADIPORI* was higher \((+19\%, p=0.02) \) in sSAT compared to dSAT. *LEP* \((+35\%,

p<0.0001), *LIPE* (+19%, p=0.03) and *LPL* (+19%, p=0.02) were all more highly expressed in dSAT compared to sSAT (Figure 2). Genes involved in inflammatory pathways such as *IL6* (+21%, p=0.02) and *MCP1* (+40%, p=0.02) were also more highly expressed in the dSAT compared to sSAT. The dSAT layer also showed higher expression of genes involved in FA synthesis (*FASN*, +18%, p=0.003; *SCD1* +20%, p=0.02, *ELOVL6*, +26%, p=0.05) and adipogenic markers (*PPARγ2*, +20%, p=0.003) (Figure 2). Men displayed higher expression of genes involved in inflammatory pathways in dSAT (*IL6* +27%, p=0.05, *MCP1* +25%, p=0.006) compared to sSAT, higher *ADIPOR1* in sSAT vs dSAT (+30%p=0.05), higher *ADIPOR2* in dSAT vs sSAT (+12%, p=0.03), higher *LIPE* in dSAT vs sSAT (+19%, p=0.02). Women expressed more *FASN* in dSAT vs sSAT (+7%,p=0.02) and there was a trend for higher *ELOVL6* expression in dSAT vs sSAT (+20%,p=0.054).

FA composition of SAT layers. As SAT layers are exposed to the same environment one can make the assumption that any difference in TG FA composition depends on within-tissue metabolic differences (Table 1). Interestingly, dSAT, which had higher *FASN* mRNA expression compared with sSAT, also had higher relative quantities of the end products of FA synthesis (14:0, p=0.029 and 16:0, p=0.002). The proportion of 16:0 was also significant after normalizing to an exogenous FA that cannot be produced by the tissue; 18:2n-6 (p=0.017). The immediate desaturation product of 16:0, 16:1n-7, was lower in dSAT compared with sSAT, despite the higher mRNA content of *SCD1*. The ‘desaturation index’ (16:1n-7/16:0) was also lower in dSAT. However, within sSAT there was a very strong correlation between the desaturation index and the mRNA content of *SCD1* (r=0.78, p=0.0001). It could be that the corresponding but weaker (r=0.54, p=0.009) association in dSAT was disrupted by the higher FA.
synthesis (generating larger quantities of the precursor). Both FA ratios indicative of fatty acyl elongation (18:0/16:0 and 18:1n-7/16:1n-7) were higher in dSAT compared with sSAT.

dSAT has a higher proportion of small adipocytes compared to sSAT. Examination of cell size distribution in the 23 paired biopsy specimens showed adipocyte size to be significantly different between sSAT and dSAT (Figure 3). The dSAT layer had a greater proportion of small adipocytes (<500 µm2) compared to sSAT (p=0.015). Using the entire data set there was a shift in adipocyte size distribution towards smaller adipocytes in the dSAT (Figure 3B) and a trend towards larger median cell size in sSAT (1.217±45 µm2 sSAT vs 1.098±45 µm2 dSAT p=0.07) (Fig 5C). We further examined if this relationship in cell size was dependent on overall adiposity by observing the differences in cell size in subjects classified according to BMI. In the non-obese group (BMI <30kg/m2), median cell size was higher in sSAT compared to dSAT while no differences were observed in the obese group (BMI ≥30kg/m2) (Figure 3C). There was an inverse association between median cell size in dSAT and mRNA expression of FA metabolic genes such as *FASN* and *SCD1* (r=-0.50, p=0.021 for *FASN*, and r=-0.42, p=0.047 for *SCD1*).

Discussion

We provide robust evidence that the deep and superficial layer of SAT have different functional characteristics and associate differently to obesity-related complications. Importantly dSAT is the strongest predictor of IR and FRS in men, independently of other obesity indices. In women however, although dSAT is also related with IR and FRS, in multivariable analysis it does not offer additional predictive value for either of the two readouts further to classical obesity indices such as BMI. The observations were obtained after developing and evaluating a
new technique to assess the depth of the two layers using ultrasound. Adiposity in men is characterized by disproportionate expansion of dSAT compared with sSAT, and dSAT/wSAT ratio correlated more strongly to obesity-related complications in men than in women. It is also particularly strongly correlated with the VAT mass. It is not only that the appreciation of distinct functional differences within the abdominal SAT layers appear to be gender-specific and help explain the complex relationships between obesity and CVD, but it also indicates that great care must be taken when accessing abdominal SAT for morphological or biochemical characterization.

Single slice CT and MRI have been used as tools to differentiate the SAT layers in small groups of individuals (10; 13; 14). The implementation and positive validation of US for the quantitative assessment of truncal SAT layers provides us with a new tool to make measurements more easily in larger numbers. The US technique is inexpensive and without any known health hazards and therefore useful in an epidemiological setting.

The relationship between VAT and IR is well known but few reports have investigated the relative contributions of SAT depots to metabolic traits (1; 10; 11; 14; 28-31).

Interestingly Miyazaki et al. showed that VAT is associated with both peripheral and hepatic IR, independent of gender, in patients with type 2 diabetes but dSAT is associated with peripheral and hepatic IR in males, but not in females (11). In our study, greater thickness of the dSAT layer was strongly associated with both global and liver-specific IR in men. However, in female adiposity the two layers were expanded similarly and the qualitative difference between the fat layers may explain some of the differences in precipitation of IR between the genders.
Similar gender-specific differences were seen for the lipid markers related to CVD. In men, statistically significant associations were only observed between dSAT and TG, ApoB and ApoA1 whereas in women dSAT and sSAT showed essentially the same significant associations with the cardiovascular risk factors. Fasting glucose, which is one of the strongest predictors for diabetes risk, was only associated with dSAT in men whereas similar significant associations between the layers were observed in women.

The tissue-specific effect of sex hormones on proliferation/differentiation of adipocytes and the expansion of specific AT depots in obesity (visceral in males and gluteal in females) are well described (32). Therefore the strong correlations between dSAT and VAT in our study imply that dSAT and VAT may be functionally similar, and they could have similar responses to sex hormones (being expanded in male adiposity leading to IR).

In within-subject paired biopsy samples we observed that the median cell size was larger in sSAT compared to dSAT, while the cell size distribution was different between the two layers with dSAT having higher abundance of the smallest adipocytes. McLaughlin et al. (33) have suggested that adipocytes within SAT from patients with IR are smaller and show higher expression of pro-inflammatory cytokines. Although it is not clear from those studies which fat layer was used, this concept fits well with our observations of higher cytokine expression in the dSAT, which is more closely associated with IR. We observed that in subjects with BMI<30Kg/m², sSAT adipocyte size is disproportionally increased compared to dSAT. In obese individuals (BMI≥30Kg/m²), the adipocyte cell size in dSAT is increased and in sSAT is decreased in a way that cell size in the two layers becomes equal, suggesting that the increased size of SAT in obesity and IR (34) could be largely attributable to increased cell size in the dSAT of these subjects.
The mechanistic background to this association is unclear but it has been speculated that it depends on the inability of adipocytes to adequately respond to the increasing need for fat storage (33). Adipocytes in sSAT may have a greater ability for FA storage and for this reason the cells increase their size while recruitment of new adipocyte might be a feature of dSAT since PPARγ2 expression levels are higher in dSAT than in sSAT. It is also possible that adipocytes from the two layers are fundamentally different and the presence of smaller cells in dSAT is a reflection of an inability to significantly increase fat storage leading to inflammation and stress signals observed here (33), while lack of adipocyte growth and impaired differentiation could be a form of adiposopathy (acquired lipodystrophy) (35). Otherwise, it is the large adipocyte size that has been associated with IR (34), higher inflammatory profile (36) and diabetes risk (37). It is possible that these associations depend on the tissue studied and even within the subcutaneous abdominal tissue there are differences that can explain these paradoxical findings.

Previous investigations have demonstrated differential gene expression between SAT and VAT depots (7-9). Walker et al. (7) reported differences in gene expression (leptin, 11β-HSD1, resistin) between sSAT and dSAT obtained from 10 volunteers undergoing abdominal surgery. In the current study we included males and females over a wide range of adiposity (BMI 17.9-46.2 kg/m²), and found a higher expression of inflammatory genes (MCP1, IL6) in the dSAT compared to sSAT in men, but not in women. This finding is in general agreement with two earlier studies (8; 9).

Adipocytes isolated from dSAT have been reported to have higher lipolytic activity compared to sSAT adipocytes (38). The higher expression of both LIPE and LPL that we found in dSAT compared with sSAT suggest that this tissue is metabolically more active. In addition, dSAT also showed higher expression of FASN and SCD1 and this was functionally supported by
the TG FA composition of the tissue where the dSAT had higher abundance of saturated FA (end products of de novo lipogenesis). Although the SCD1 mRNA expression was higher in dSAT compared with sSAT, the marker for SCD1 activity (the desaturation index) was significantly higher in sSAT. This corresponded well with a similar and recent observation from our laboratory comparing the abdominal and gluteal tissue (39), where a higher abundance of 16:1n-7, a proposed insulin-sensitizing lipokine, was noted in gluteofemoral compared with abdominal AT. In the current study the SAT layer with the weaker association to IR (sSAT) had the highest abundance of 16:1n-7.

Although the biology of abdominal dSAT appears to have similarities to VAT, the links we identify in this study between cardiometabolic risk and features in the expansion and biology of dSAT may not necessarily be causal. Dysfunction of peripheral (not only abdominal) AT may also play a role in the overall capacity for fat storage, and it is possible that because of impaired adipogenesis, peripheral AT depots may not be able to store excessive energy during positive caloric balance resulting in energy overflow to other fat depots (such as dSAT, VAT and even ectopic fat)(40). In this scenario, an increase in abdominal dSAT and VAT could be considered a surrogate biological manifestation of global AT dysfunction.

The descriptive nature of the study does not allow any final conclusions on the biological importance of our findings, and further mechanistic studies are required to explore the AT-specific functional differences between deep and superficial SAT.

Conclusions: Collectively it is underpinned by clear functional differences between the two distinct fat layers in the abdominal wall that dSAT is the part of SAT that matters for the relationship to obesity-related complications, at least in men, and may have a different role than
sSAT in the pathophysiology of male pattern adiposity and subsequent risk of diabetes and cardiovascular disease.

ACKNOWLEDGMENTS

This study was funded by the European Commission under the Marie Curie Programme (FP7-PEOPLE-2011-IEF). The contents reflect only the author’s views and not the views of the European Commission. The study was also partly supported by the British Heart Foundation (Project Grants PG/09/003 and PG/12/78/29862). LH is a British Heart Foundation Intermediate Fellow in Basic Science.

The authors thank Mrs M Gilbert, Mrs S Humphreys, Miss L Dennis, Mrs S Beatty and Mrs J Cheeseman (all University of Oxford) for their assistance.

No potential conflict of interest relevant to this article was reported.

Contribution of co-authors: KM, LH, MJN, AC conducted the experimental procedures. KM, LH, BF and FK wrote the manuscript. MK, SKV, RB, KB edited the manuscript. FK designed and had the overall supervision of the study. FK, is the guarantor of this work and as such, had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
References

Table 1-Fatty acid composition of superficial (sSAT) and deep subcutaneous abdominal adipose tissue (dSAT)

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>sSAT (n=22)</th>
<th>dSAT (n=22)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>2.14 ± 0.10</td>
<td>2.53 ± 0.22</td>
<td>0.029</td>
</tr>
<tr>
<td>14:1 n-5</td>
<td>0.27 ± 0.04</td>
<td>0.22 ± 0.03</td>
<td>0.150</td>
</tr>
<tr>
<td>16:0</td>
<td>20.44 ± 0.43</td>
<td>21.06 ± 0.43</td>
<td>0.002</td>
</tr>
<tr>
<td>16:1 n-7</td>
<td>5.42 ± 0.31</td>
<td>4.51 ± 0.26</td>
<td><0.001</td>
</tr>
<tr>
<td>18:0</td>
<td>3.08 ± 0.14</td>
<td>3.70 ± 0.16</td>
<td><0.001</td>
</tr>
<tr>
<td>18:1 n-9</td>
<td>48.84 ± 0.53</td>
<td>48.84 ± 0.57</td>
<td>0.994</td>
</tr>
<tr>
<td>18:1 n-7</td>
<td>2.16 ± 0.04</td>
<td>2.14 ± 0.04</td>
<td>0.783</td>
</tr>
<tr>
<td>18:2 n-6</td>
<td>14.56 ± 0.40</td>
<td>13.87 ± 0.39</td>
<td>0.07</td>
</tr>
<tr>
<td>18:3 n-3</td>
<td>1.45 ± 0.09</td>
<td>1.44 ± 0.09</td>
<td>0.881</td>
</tr>
</tbody>
</table>

Fatty acid ratios

<table>
<thead>
<tr>
<th>Fatty acid ratios</th>
<th>sSAT (n=22)</th>
<th>dSAT (n=22)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:1 n-7 / 16:0</td>
<td>0.27 ± 0.02</td>
<td>0.22 ± 0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>18:1 n-9 / 18:0</td>
<td>16.64 ± 0.82</td>
<td>13.79 ± 0.70</td>
<td><0.001</td>
</tr>
<tr>
<td>18:0 / 16:0</td>
<td>0.15 ± 0.01</td>
<td>0.18 ± 0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>18:1 n-7 / 16:1 n-7</td>
<td>0.43 ± 0.03</td>
<td>0.51 ± 0.03</td>
<td>0.001</td>
</tr>
<tr>
<td>16:0 / 18:2 n-6</td>
<td>1.44 ± 0.06</td>
<td>1.55 ± 0.06</td>
<td>0.017</td>
</tr>
</tbody>
</table>

Fatty acid values are expressed as percentage of total fatty acids. Data are expressed as mean±SEM.
Figure 1

Comparison of whole subcutaneous fat (wSAT), deep subcutaneous fat (dSAT), superficial subcutaneous fat (sSAT) and Visceral Adipose Tissue (VAT) between males and females. Males had significantly greater dSAT and VAT but less sSAT than females \((A,B) \) (log transformed values are expressed as mean ± SEM). \(*P<0.0001 \) vs males.

Associations between VAT and sSAT / dSAT in males and females. In men, VAT was strongly associated with dSAT but not with sSAT \((C, D) \), while in women, both SAT layers were similarly associated with VAT \((E, F) \).

Figure 2

Differences in gene expression between sSAT and dSAT in 43 subjects (21 men and 22 women). \(ADIPOQ \): adiponectin; \(ADIPOR1 \): adiponectin receptor 1; \(ADIPOR2 \): adiponectin receptor 2; \(LEP \): leptin; \(SCD1 \): Stearoyl-CoA desaturase-1; \(FASN \): fatty acid synthase; \(PPARG2 \): peroxisome proliferator-activated receptor gamma 2; \(IL-6 \): interleukin-6; \(CCL2 \): monocyte chemotactic protein-1; \(LPL \): lipoprotein lipase; \(LIPE \): hormone sensitive lipase. Values expressed as mean ± SEM, \(*P<0.05, \dagger P<0.01, \ddagger P<0.0001 \) vs Males.

Figure 3

Sections of superficial subcutaneous adipose tissue (sSAT) and deep subcutaneous adipose tissue (dSAT) \((A) \). Frequency distribution of adipocyte cell surface area from dSAT and sSAT revealed an increased proportion of small adipocytes in the dSAT compared with the sSAT \((B) \). Comparison of median adipocyte cell surface area from dSAT and sSAT \((C) \). \(n=23 \) per group, >100 cells were measured for each biopsy; BMI: Body mass index
Figure 2

![Bar chart showing relative gene expression levels for different genes in dSAT and sSAT groups. The chart is divided into three categories: Adipokines, Inflammation, and FA Metabolism. Significant differences are indicated by asterisks and superscript symbols.](image)

254x190mm (96 x 96 DPI)
Figure 3

A

dSAT

sSAT

B

Relative Frequency (% of total cells)

Fat cell area (µm²)

P_{ANOVA} = 0.015

C

Median cell size (µm²)

BMI ≥ 30 kg/m²

BMI < 30 kg/m²

P < 0.05

179x256mm (96 x 96 DPI)
Data Supplement

Correlations between SAT layers, metabolic, IR markers and CVR profile. In men, dSAT was consistently more strongly associated with TG, ApoB, ApoA1, glucose, hsCRP, HOMA and IGFBP1 compared with sSAT (Table S3). In women the associations were similar between the two layers. In both men and women the strongest associations between the selected markers were found for the global IR (HOMA-IR) and the liver-specific IR measure (IGFBP-1). For dSAT, these relationships were of similar strength and directional nature as the correlations with BMI and WC.

The dSAT/wSAT was correlated with diastolic (r=0.35, p<0.0001) and systolic (r=0.18, p<0.05) BP in men, but the corresponding associations were not statistically significant in women.

Multivariate analysis of IR: To further evaluate the sex-specific role of dSAT in the characterization of IR, we performed multivariable analysis, and observed that HOMA-IR was associated with dSAT (standardized β=0.40, P=0.002) independently of WC (standardized β=0.21, P=0.087) in males (R² for the model 0.33, P<0.0001). However, in women, HOMA-IR was associated with WC (standardized β=0.21, P=0.0001) independently of dSAT (standardized β=0.10, P=0.25) or WC (standardized β=0.21, P=0.14) with R² for the model 0.292, P<0.0001). This finding underlines the role of disproportional expansion of dSAT in the development of IR in men.

Expansion of SAT layers and Framingham Risk Score (FRS) in males and females: The depth of dSAT (but not sSAT) was significantly associated with FRS, in both genders. (Supplementary Figure S2). Furthermore, in the overall population, subjects with 10-year CVR (according to FRS) >4% had significantly greater dSAT compared to those with 10-year risk 1-4% or <1% (P<0.0001). However, the 10-year CVR was unrelated to sSAT
(P=NS). The ratio dSAT/wSAT was also significantly related with the 10-year CVR (P<0.0001). Importantly, the 10-year risk in women was unrelated to SAT layers expansion and dSAT/wSAT (P=NS). On the contrary, 10-year CVR in males was significantly related to dSAT (P<0.05) and dSAT/wSAT (P=0.006) but not sSAT.

Multivariate analysis of FRS: In multivariable analysis, in men, dSAT was a predictor of FRS (standardized β=0.238, P<0.004) independently of BMI, HOMA-IR or sSAT.

In contrast, in women, HOMA-IR was a predictor of FRS (standardized β=0.301, P<0.0001) independently of BMI, sSAT or dSAT.
Table S1 - Characteristics of study volunteers. Men and women were matched for age and wSAT.

<table>
<thead>
<tr>
<th></th>
<th>Men (n=146)</th>
<th>Women (n=225)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>43 (38-47)</td>
<td>43 (39-46)</td>
</tr>
<tr>
<td>Anthropometric variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and blood pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wSAT (cm)</td>
<td>2.38 (1.6-3.1)</td>
<td>2.32 (1.36-3.08)</td>
</tr>
<tr>
<td>dSAT (cm)</td>
<td>1.38 (0.82-1.06)</td>
<td>1.11 (0.62-1.6)</td>
</tr>
<tr>
<td>sSAT (cm)</td>
<td>0.80 (0.59-1.06)</td>
<td>1.13 (0.67-1.98)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.8 (24.5-30.7)</td>
<td>24 (22.6-28.6)</td>
</tr>
<tr>
<td>WHR</td>
<td>0.92 (0.88-0.97)</td>
<td>0.82 (0.77-0.87)</td>
</tr>
<tr>
<td>WC (cm)</td>
<td>96 (87.7-105)</td>
<td>82 (75-92)</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>127 (118-135)</td>
<td>116 (107-123)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>82 (75-88)</td>
<td>87 (69-83)</td>
</tr>
<tr>
<td>Fasting plasma variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TG (mmol/l)</td>
<td>1.34 (0.87-1.86)</td>
<td>0.95 (0.69-1.58)</td>
</tr>
<tr>
<td>Cholesterol (mmol/l)</td>
<td>5.35 (4.7-6.01)</td>
<td>5.16 (4.5-5.84)</td>
</tr>
<tr>
<td>HDL-C (mmol/l)</td>
<td>1.10 (0.93-1.31)</td>
<td>1.46 (1.23-1.72)</td>
</tr>
<tr>
<td>LDL-C (mmol/l)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ApoB (g/l)</td>
<td>1.03 (0.88-1.17)</td>
<td>0.87 (0.73-1.04)</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>5.42 (5.1-5.7)</td>
<td>5.02 (4.8-5.2)</td>
</tr>
<tr>
<td>NEFA (μmol/l)</td>
<td>434 (300-580)</td>
<td>533 (386.5-702.5)</td>
</tr>
<tr>
<td>hsCRP (mg/l)</td>
<td>1.22 (0.47-2.59)</td>
<td>0.85 (0.44-1.82)</td>
</tr>
<tr>
<td>3-OH-butyrate (μmol/l)</td>
<td>56.8 (35.3-104.8)</td>
<td>75.05 (42.1-168.25)</td>
</tr>
<tr>
<td>Measures of IR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>2.99 (2.15-4.57)</td>
<td>2.39 (1.9-3.2)</td>
</tr>
<tr>
<td>IGFBP-1 (μg/ml)</td>
<td>28 (15-50)</td>
<td>37 (23-54)</td>
</tr>
<tr>
<td>Insulin (mU/l)</td>
<td>10.40 (7.5-13.3)</td>
<td>12.00 (7.8-17.9)</td>
</tr>
</tbody>
</table>

Data are median ±IQR. Comparison of Males vs Females, *P<0.05, †P<0.01, ‡P<0.0001

Abbreviations: whole subcutaneous adipose tissue (wSAT); superficial subcutaneous adipose tissue (sSAT); deep subcutaneous adipose tissue (dSAT); body mass index (BMI); waist circumference (WC); waist to hip ratio (WHR); systolic blood pressure (SBP); diastolic blood pressure (DBP); triglyceride (TG); high-density lipoprotein cholesterol (HDL-C); low-density lipoprotein cholesterol (LDL-C); non-esterified fatty acids (NEFA); Apolipoprotein B (ApoB); 3-hydroxybutyrate (3-OH-butyrate); homeostasis model assessment of insulin resistance (HOMA-IR); systolic blood pressure (SBP); diastolic blood pressure (DBP); high sensitivity c-reactive protein (hsCRP); Insulin-like growth factor binding protein-1 (IGFBP-1).
Table S2- Associations between classic anthropometric indices and the SAT layers.

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th></th>
<th>Females</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMI</td>
<td>WHR</td>
<td>WC</td>
<td>BMI</td>
</tr>
<tr>
<td>wSAT</td>
<td>0.71†</td>
<td>0.55‡</td>
<td>0.71‡</td>
<td>0.74‡</td>
</tr>
<tr>
<td>dSAT</td>
<td>0.74‡</td>
<td>0.64‡</td>
<td>0.75‡</td>
<td>0.65‡</td>
</tr>
<tr>
<td>sSAT</td>
<td>0.40‡</td>
<td>0.25†</td>
<td>0.37‡</td>
<td>0.68‡</td>
</tr>
<tr>
<td>dSAT/wSAT</td>
<td>0.58‡</td>
<td>0.59‡</td>
<td>0.62‡</td>
<td>0.13*</td>
</tr>
<tr>
<td>BMI</td>
<td>-</td>
<td>0.69‡</td>
<td>0.92‡</td>
<td>-</td>
</tr>
<tr>
<td>WHR</td>
<td>0.69‡</td>
<td>-</td>
<td>0.81‡</td>
<td>0.40‡</td>
</tr>
<tr>
<td>WC</td>
<td>0.92‡</td>
<td>0.81‡</td>
<td>-</td>
<td>0.89‡</td>
</tr>
</tbody>
</table>

*P<0.05, †P<0.01, ‡P<0.001, \(^\d\)P<0.0001. Abbreviations: whole subcutaneous adipose tissue (wSAT); superficial subcutaneous adipose tissue (sSAT); deep subcutaneous adipose tissue (dSAT); body mass index (BMI); waist to hip ratio (WHR); waist circumference (WC).
Table S3 - Associations between the depth of SAT layers and metabolic profile in men and women

<table>
<thead>
<tr>
<th></th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TAG</td>
<td>APOB</td>
</tr>
<tr>
<td>wSAT</td>
<td>0.25</td>
<td>0.16</td>
</tr>
<tr>
<td>dSAT</td>
<td>0.37</td>
<td>0.22</td>
</tr>
<tr>
<td>sSAT</td>
<td>0.16</td>
<td>0.02</td>
</tr>
<tr>
<td>dSAT/wSAT</td>
<td>0.34</td>
<td>0.28</td>
</tr>
<tr>
<td>BMI</td>
<td>0.36</td>
<td>0.23</td>
</tr>
<tr>
<td>WC</td>
<td>0.39</td>
<td>0.20</td>
</tr>
<tr>
<td>WHR</td>
<td>0.34</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Associations between anthropometric parameters (classic measures of adiposity, dSAT, sSAT, wSAT) and plasma lipids, HOMA IR, Glucose, hscRP and IGFBP1 in males and females. All values are log transformed ($^{*}P<0.0001$; $^{*}P<0.01$, $^{*}P<0.05$).

whole subcutaneous adipose tissue (wSAT); superficial subcutaneous adipose tissue (sSAT); deep subcutaneous adipose tissue (dSAT); body mass index (BMI); waist circumference (WC); waist to hip ratio (WHR); triglycerides (TAG); apolipoprotein B (ApoB); apolipoprotein A1 (Apo A1); Glucose (GLU); high sensitivity c-reactive protein (hsCRP); homeostasis model assessment of insulin resistance (HOMA-IR); Insulin-like growth factor binding protein-1 (IGFBP-1).
Study population

The Oxford Biobank (OBB) Cohort: A random and population-based screening project of Caucasian residents in Oxfordshire, with n=5000; actively recruiting

Study main cohort
(n=371 Caucasians recruited consecutively in OBB)
- SAT ultrasound imaging
- Blood samples
-- Lipid profile
-- Framingham risk score

- DEXA scan (n=255)
- Validation of U/S technique by MRI (n=18)

U/S guided biopsies of dSAT/sSAT(n=43)
- Gene expression studies

Histology (n=23) FA composition (n=22)

25 Asian Indians from Local Community
- SAT ultrasound imaging

Comparisons between Caucasians and Asians

25 Caucasians matched to the Asian Indians (nested cohort)