Cystatin C- and creatinine-based estimated glomerular filtration rate, vascular disease, and mortality in persons with diabetes in the United States

Ching-Wei Tsai, MD MPH (1)*; Morgan E. Grams, MD, PhD (2)*; Lesley A. Inker, MD (3); Josef Coresh, MD, PhD (1,2); Elizabeth Selvin, PhD, MPH (1, 2)

*Co-first authors. Both authors contributed equally to this work.

(1) Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD
(2) Johns Hopkins University School of Medicine, Baltimore, MD
(3) Tufts Medical Center, Boston, MA

Word Count: abstract 248, body 3027
Tables & figures: 4
Supplemental information is provided in an Online Appendix

Running title: GFR estimation and vascular complications

Corresponding author:
Morgan Grams, MD, PhD
1830 East Monument, Suite 416
Baltimore, MD 21205
Phone: 443-287-1827
Fax: 410-955-0485
Email: mgrams2@jhmi.edu
ABSTRACT

Introduction: Serum cystatin C is an alternative to serum creatinine for estimating glomerular filtration rate (GFR) since cystatin C is less influenced by age and muscle mass. Among persons with diabetes, we compared the performance of GFR estimated using cystatin C (eGFR$_{cys}$) with that using creatinine (eGFR$_{cr}$) for the identification of reduced kidney function and its association with diabetic complications.

Research Design & Methods: We analyzed data from adult participants from the 1999-2002 National Health and Nutrition Examination Survey with available cystatin C (N=4457). Kidney function was dichotomized as preserved (eGFR \geq 60 ml/min/1.73 m2) or reduced (eGFR < 60 ml/min/1.73 m2) using the 2012 CKD-EPI cystatin C and the 2009 CKD-EPI creatinine equations.

Results: Among 778 persons with diabetes, the prevalence of reduced kidney function was 16.5% using eGFR$_{cr}$ and 22.0% using eGFR$_{cys}$. More persons with diabetes were reclassified from preserved kidney function by eGFR$_{cr}$ to reduced kidney function by eGFR$_{cys}$ than persons without diabetes (OR 3.1, 95% CI: 1.9-4.9, p<0.001). The associations between lower eGFR and higher prevalence of albuminuria, retinopathy, peripheral arterial disease, and coronary artery disease were robust regardless of filtration marker. Similarly, the risk of all-cause mortality increased with lower eGFR$_{cr}$ and eGFR$_{cys}$. Only lower eGFR$_{cys}$ was significantly associated with cardiovascular mortality.

Conclusions: More persons with diabetes had reduced kidney function by eGFR$_{cys}$ than by eGFR$_{cr}$, and lower eGFR$_{cys}$ was strongly associated with diabetic complications. Whether eGFR$_{cys}$ is superior to eGFR$_{cr}$ in approximating true kidney function in a diabetic population requires additional study.
Diabetes is the leading cause of chronic kidney disease (CKD) in developed countries, including the United States (1, 2). Diabetic kidney disease accounts for 40% of prevalent CKD and 50% of incident end-stage renal disease (ESRD), and it has increased in direct proportion to the increasing prevalence of diabetes (2-4). People with diabetes often suffer from microvascular and macrovascular complications, including retinopathy, nephropathy, coronary artery disease, peripheral arterial disease, and stroke, as well as early mortality (5, 6). Compared with persons with diabetes and preserved kidney function, those with diabetes and CKD face even higher risks of morbidity and mortality. Indeed, both reduced kidney function and albuminuria are independent predictors for cardiovascular disease as well as all-cause mortality (7, 8). Accurate estimation of GFR and identification of CKD is important.

In clinical practice, kidney function is estimated rather than measured. Glomerular filtration rate estimated using serum creatinine (eGFR\textsubscript{cr}) is the most common approach; however, creatinine is influenced by age, muscle mass, sex, and race (9). Given these limitations, serum cystatin C has been proposed as an alternative filtration marker (10). Cystatin C, an endogenous protein believed to be produced by all nucleated cells, is less affected by age, race, and muscle mass and, in the general population, associates more strongly with all-cause and cardiovascular mortality than does serum creatinine (11, 12). However, body mass index (BMI), diabetes, and inflammation may affect cystatin C levels independent of kidney function (13). Given the high prevalence of obesity in the population with diabetes, as well as the suggestion that cystatin may perform differently in patients with diabetes, there is controversy as to whether cystatin C-based or creatinine-based eGFR equations should be used to estimate kidney function in this population (14, 15). Furthermore, it is unknown whether the associations of diabetic complications with kidney function estimated using cystatin C (eGFR\textsubscript{cys}) are similar to those observed using eGFR\textsubscript{cr}.
Using nationally representative data from the 1999-2002 National Health and Nutrition Examination Survey (NHANES), we estimated the prevalence of reduced kidney function (eGFR<60 ml/min/1.73 m²) among persons with diabetes using the 2012 CKD-EPI cystatin C (16) and 2009 CKD-EPI creatinine (17) equations and investigated the discordance in CKD classification by the two filtration markers. We also compared the associations of eGFR_{cr} and eGFR_{cys} with prevalent complications of diabetes, including albuminuria, peripheral arterial disease, retinopathy, and coronary artery disease, as well as incident all-cause and cardiovascular mortality.

RESEARCH DESIGN AND METHODS

Study Population

The NHANES is an ongoing cross-sectional, multistage, stratified, clustered probability sample of the US civilian non-institutionalized population conducted by the National Center for Health Statistics (NCHS). Cystatin C concentrations were measured in a subsample of the NHANES 1999-2002 participants aged 12 years and older who were not missing serum creatinine (18). For the present study, we included all participants in the cystatin C subsample aged 20 years or older (N=4,457; 778 of whom had diabetes). The ankle brachial index (ABI), used to define peripheral arterial disease, was measured only in persons aged 40 or older (N=556 of the 778 participants with diabetes, 10 of whom with ABI>1.5 were excluded due to concern for calcified atherosclerosis) (19, 20).

Assessment of Diabetes and Kidney Function
We classified persons as having diabetes if they reported a physician diagnosis of diabetes, took anti-diabetic pills or insulin injections, or had a glycated hemoglobin (HbA1c) value of 6.5% or higher. No distinction was made with regard to type of diabetes. Preserved/reduced kidney function was defined as eGFR ≥60 ml/min/1.73 m²/eGFR<60 ml/min/1.73 m², estimated using standardized creatinine and cystatin C values and the CKD-EPI 2009 and 2012 equations, respectively (16, 17). The term advanced CKD was used to indicate CKD stage 4 or 5 (eGFR <30 ml/min/1.73 m²). Creatinine values from NHANES 1999-2000 were standardized (standard creatinine (mg/dl) =0.147+ 1.013 x [NHANES 1999–2000 uncalibrated serum creatinine, mg/dl]), whereas no correction to the creatinine values in the 2001–2002 survey was needed (21, 22). Cystatin C values were recalibrated and standardized to the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) standard, (IFCC standard cystatin C (mg/l) = 1.12×[(cystatin C (mg/l))−0.12] (22).

Other Variables of Interest
Hypertension was defined as mean systolic pressure ≥140 mm Hg, mean diastolic pressure ≥90 mm Hg, self-reported hypertension, or the use of an anti-hypertensive medication. Hyperlipidemia was defined as total cholesterol concentration ≥ 200 mg/dL. Low high-density lipoprotein (HDL) cholesterol was defined as serum HDL < 40 mg/dL. Information on age, sex, race, and smoking was self-reported. Smoking status was determined using answers to the questions, ‘Have you smoked at least 100 cigarettes in your life?’ and ‘Do you now smoke cigarettes?’

Prevalent Micro- and Macrovascular Outcomes
Coronary artery disease was defined on the basis of a self-reported history of coronary heart disease, angina, or previous heart attack. Albuminuria was defined as a urinary
albumin/creatinine ratio (ACR) ≥ 30 mg/g. Peripheral arterial disease was defined by an ABI < 0.90 in either leg (23). Diabetic retinopathy was self-reported (‘Has a doctor ever told you that diabetes has affected your eyes or that you had retinopathy?’).

Mortality Follow-up

Information on all-cause and cardiovascular mortality was obtained using the linkage of NHANES data to death certificate data from the National Death Index (24). The underlying cause of death was coded according to the International Classification of Diseases, Tenth Revision (ICD-10). Outcomes of interest included all-cause and cardiovascular (ICD-10 code I00-I78) mortality. Length of follow-up for each participant was calculated as the date of the NHANES examination to date of death or December 31, 2006 (whichever occurred first).

Statistical Analyses

All statistical analyses incorporated modified sampling weights, primary sampling units, and strata specific to the sample with available cystatin C in order to generate nationally representative estimates of the U.S. population (18). Standard errors were estimated using the Taylor series (linearization) method. Kidney function was analyzed both as a continuous measure using restricted cubic splines and as a categorical measure according to K/DOQI classification (eGFR < 15, 15 to 29, 30 to 59, 60 to 89, 90 to 200 ml/min/1.73 m²) for both eGFR_{cr} and eGFR_{cys}. Individuals with eGFR values > 200 ml/min/1.73 m² were reassigned a value of 200 ml/min/1.73 m² (2 persons with eGFR_{cr} > 200 ml/min/1.73 m²).

Modified Poisson regression models were used to examine the relationship of eGFR to the prevalence of coronary artery disease, peripheral arterial disease, albuminuria and retinopathy (25). Associations of eGFR and mortality were examined using multivariable Cox
proportional hazards models. The proportional hazards assumption was tested using log-log plots by category of eGFR. All multivariable models were adjusted for age (years), female sex (yes, no), and race (non-Hispanic black, non-Hispanic white, Hispanic, other) as well as current smoking status (current, former, never), body mass index (kg/m2), hypercholesterolemia (yes, no), low HDL (yes, no), hypertension (yes, no), coronary artery disease (yes, no), and albuminuria (yes, no; only in analyses where albuminuria was not the outcome). Given the possible relationship between cystatin C and obesity, interactions between BMI, eGFRcys and adverse outcomes were tested in multivariable models. All analyses were conducted using Stata Version 12 (College Station, TX).

RESULTS

Study population

The prevalence of diabetes among U.S. adults was 8.2% (95% CI, 7.4%-9.0%). Persons with diabetes were older, more likely to be black, and more likely to be male than those without diabetes (Table 1). Persons with diabetes also had poorer lipid profiles. Two-thirds of persons with diabetes had hypertension, which was nearly twice as prevalent compared to those without diabetes (63.8% vs. 33.4%). There was also a substantial difference in the distribution of BMI: 50% of the U.S. population with diabetes had a BMI\geq30 kg/m2, compared with 28% without diabetes; and 28% of persons with diabetes had a BMI\geq 35 kg/m2, compared with 12% of those without diabetes. The prevalence of reduced kidney function was almost 3-times higher in persons with diabetes compared to those without diabetes (eGFRcr: 16.5% vs. 5.8%; eGFRcys: 22.0% vs. 7.9%).

Prevalence of reduced kidney function in persons with diabetes, by filtration marker
The trend of higher prevalence of reduced kidney function by eGFR_{cys} persisted across subgroups of gender, race, age, and BMI (Supplemental Figure S1). On the absolute scale, the discrepancy in eGFR_{cys} vs. eGFR_{cr} was largest in older individuals. The absolute difference in reduced kidney function prevalence estimated by cystatin C vs. creatinine was 6.9 % in those aged 60-80 years and 10.3% in those aged 80 years and older. Similarly, the absolute difference was larger among persons with BMI >30 kg/m^2 (reduced kidney function by eGFR_{cys} vs. eGFR_{cr}: 20.0% vs. 13.1%) than among those with BMI < 30 kg/m^2 (reduced kidney function by eGFR_{cys} vs. eGFR_{cr}: 21.3% vs. 16.9%).

Reclassification of reduced kidney function by filtration marker

Discordance between eGFR_{cr} and eGFR_{cys} in the classification of reduced kidney function was 11.8% in persons with diabetes and 4.7% in persons without diabetes. In the population with diabetes, 10.4% of those classified as having preserved kidney function by eGFR_{cr} (8.7% of the 83.6% with eGFR_{cr} ≥ 60 ml/min/1.73m^2) were reclassified as having reduced kidney function by eGFR_{cys} (Supplemental Table S1A). In the population without diabetes, 3.6% of those classified as having preserved kidney function by eGFR_{cr} (3.4% of the 94.2% with eGFR_{cr} ≥ 60 ml/min/1.73m^2) were reclassified as having reduced kidney function by eGFR_{cys} (Supplemental Table S1B). Within the overall population, diabetes status was significantly associated with reclassification from preserved kidney function by eGFR_{cr} to reduced kidney function by eGFR_{cys} (OR 3.1, 95% CI: 1.9-4.9, p<0.001) (Supplemental Table S2). This association was attenuated but still significant after sequential adjustment for eGFR_{cr} and BMI, but not after further adjustment for age. In contrast, eGFR_{cr}, BMI, age, and albuminuria were all significantly associated with reclassification by eGFR_{cys} in multivariable regression (eGFR_{cr}: OR 0.9 per 1 ml/min/1.73 m^2 increase, p<0.001; BMI: OR
1.5 per 5 kg/m² increase, p<0.001; age: OR 1.8 per decade increase, p<0.001; ACR>30mg/g: OR 2.2, p=0.01).

Association of kidney function with micro- and macro-vascular complications, by filtration marker

In the population with diabetes, the prevalence of albuminuria, retinopathy, coronary artery disease, and peripheral arterial disease was high, even among those with preserved kidney function (Figure 1). The most common of these complications was albuminuria, present in 27.0% of those with eGFR_{cr} ≥ 60 ml/min/1.73 m² and 55.9% of those with eGFR_{cr} < 60 ml/min/1.73 m². The prevalence of coronary artery disease, retinopathy, and peripheral artery disease were also 2-3 times higher among those with reduced kidney function than those with preserved kidney function. In general, the probability of microvascular and macrovascular complications increased with lower eGFR; above eGFR 90 ml/min/1.73 m², relationships between eGFR and vascular complications were more variable. The unadjusted relationships between eGFR, coronary artery disease, peripheral arterial disease, albuminuria, and retinopathy were similar using eGFR_{cr} and eGFR_{cys}, although there was suggestion of a “U-shape” (with higher risk at both higher and lower levels of GFR) in the association between albuminuria, retinopathy, and eGFR_{cr} but not eGFR_{cys} (Supplemental Figure S2A-2D).

After adjustment for demographic and traditional cardiovascular risk factors, the prevalence ratios for vascular complications (coronary artery disease, peripheral arterial disease, albuminuria, retinopathy) by eGFR category were similar using creatinine or cystatin C (Table 2). Compared with a reference group of eGFR 60-90 ml/min/1.73 m², persons with advanced CKD (eGFR 15-30 ml/min/1.73 m²) had a higher prevalence of coronary artery disease, albuminuria, and retinopathy, regardless of filtration marker used. The adjusted
relationships between eGFR category and peripheral arterial disease were similar in
magnitude but not statistically significant. There were no significant interactions between
BMI, eGFR\textsubscript{cys}, and vascular complications.

All cause and cardiovascular mortality in those with and without reduced kidney function
There were 153 deaths (63 from a cardiovascular cause) during a median follow-up of 5.3
years among the 778 participants with diabetes. The risk of both all-cause and cardiovascular
mortality increased with lower eGFR, regardless of filtration marker used (Table 3).
Compared with the reference group of eGFR 60-90 ml/min/1.73m2, persons with eGFR 15-
30 ml/min/1.73 m2 had a significantly higher risk of all-cause mortality (eGFR\textsubscript{cys}: HR=3.8,
p=0.007; eGFR\textsubscript{cr}: HR=2.6, p=0.04). By contrast, eGFR 15-30 ml/min/1.73 m2 was
significantly associated with increased cardiovascular mortality when estimated by cystatin C
(HR=5.3, p=0.007) but not by creatinine (HR=2.0, p=0.3). There were no significant
interactions between BMI, eGFR\textsubscript{cys}, and either all-cause or cardiovascular mortality.

CONCLUSIONS

This nationally representative study of persons with diabetes suggests that the use of cystatin
C to estimate kidney function would result in a higher prevalence of reduced kidney function
than would estimates using serum creatinine. Reclassification from preserved kidney function
using creatinine to reduced kidney function using cystatin C occurred more commonly
among persons with diabetes than those without, but this observation was explained by
differences in the distributions of eGFR, BMI, age, and albuminuria between the two
populations: reclassification was significantly associated with lower eGFRcr, higher BMI,
older age, and ACR > 30 mg/g. Lower eGFR as determined by either creatinine or cystatin
was associated with higher odds of prevalent vascular complications; however, the shape of the relationship with albuminuria and retinopathy at higher levels of eGFR differed slightly by filtration marker in unadjusted analysis. Similarly, while low eGFR was robustly associated with all-cause mortality, only eGFR\textsubscript{cys} showed significant association with cardiovascular mortality.

Differences in eGFR\textsubscript{cr} and eGFR\textsubscript{cys} have been noted previously in the general population (26, 27). In the U.S. non-institutionalized civilian population, kidney function estimated using cystatin C resulted in a reduced kidney function prevalence of 8.7% compared with an estimated 6.5% using creatinine (26). In a cross-sectional study of 1,360 inhabitants of the Alpine region in Europe, Pattaro and colleagues noted that the Lin’s concordance correlation coefficient of eGFR\textsubscript{cr} and eGFR\textsubscript{cys} was 0.56, with significant differences by age (0.57 in those ≥ 65 years vs. 0.38 in those < 65 years) but not by diabetes status (28). Our results differ somewhat from this prior study; the presence of diabetes differentially affected kidney disease classification by eGFR\textsubscript{cr} and eGFR\textsubscript{cys}, at least in univariable analysis, an observation which may be attributable to our larger sample size and distinct, American population.

Neither creatinine nor cystatin C is a perfect marker of glomerular filtration; each has non-GFR determinants. Some have argued that neither marker can adequately estimate true GFR in persons with diabetes; however, this concern is primarily relevant for those with high GFR, not reduced GFR as in the present study (29, 30). The strong relationship between reclassification to reduced kidney function by eGFR\textsubscript{cys} and age may be due to inherent properties of the filtration markers. In the case of creatinine, muscle mass and diet are significantly associated with creatinine levels (31). Older persons may be sicker than their younger peers; thus, kidney function estimated using serum creatinine may be confounded by
cachexia and muscle wasting. A similar explanation could apply to the differences seen with albuminuria (i.e., those with albuminuria are sicker than their peers without albuminuria). To our knowledge, the observation that reclassification by cystatin C occurs more frequently among those with albuminuria is novel; however, it is fully consistent with a recent study demonstrating that the decrement in eGFR_{cys} associated with 24-hour albuminuria over 30 mg was greater than that of eGFR_{cr} or measured GFR (27).

In the population with diabetes, both serum creatinine and cystatin C may have drawbacks. Serum creatinine may poorly estimate kidney function given the tendency of persons with diabetes to have a lower than average muscle mass. Cystatin C may be directly affected by both BMI and diabetes (13, 32, 33). In obese individuals, cystatin C levels are higher, and eGFR_{cys} significantly underestimates true kidney function (27, 31). Indeed, our study suggests that much of the association between diabetes and cystatin C is driven by differences in the distribution of age and BMI. Additional work is needed to determine whether an approach using cystatin C or both filtration markers (the latter of which better approximates measured GFR in the overall population) would improve kidney function estimates in the population with diabetes (16).

Conventional wisdom is that, among persons with diabetes, kidney function decline and vascular complications go hand in hand. Certainly, our results support the association of prevalent complications with very low eGFR whether estimated by creatinine or cystatin C. Interestingly, in the upper ranges of preserved kidney function, the association between eGFR_{cr} and retinopathy reversed, with higher levels of eGFR_{cr} conferring increased odds of retinopathy, although this was not statistically significant in adjusted analysis. A similar pattern was seen in the univariate association of eGFR_{cr} and albuminuria. These observations
are consistent with previous studies demonstrating weaker-than-expected correlation between eGFR_{cr}, albuminuria, and retinopathy (34). Because of the more monotonic relationship seen between eGFR_{cys}, albuminuria, and retinopathy, it is possible that kidney function based on cystatin C may prove a better predictor of diabetic complications than that based on creatinine. However, this may be more useful in defining a low-risk group than a high-risk group, given the larger differences in the upper ranges of eGFR. We also observed that the relationship between eGFR_{cys} and all-cause and cardiovascular mortality was stronger than the corresponding relationship with eGFR_{cr}, similar to findings in the general population (11, 12, 35) and previous studies of persons with diabetes (36). Additional prospective studies are needed to determine whether eGFR_{cys} provides better risk stratification for subsequent diabetic complications.

Our study has certain limitations. We relied on a single measurement of creatinine and cystatin; GFR is estimated from these filtration markers and not measured directly. As such, we cannot assess which filtration marker most closely approximates true kidney function. Additional research is needed to determine if the confounding by age and BMI (or other unmeasured confounders such as thyroid disease) in diabetes favors eGFR_{cr}, eGFR_{cys}, or perhaps a combination of the two. Additionally, a single random sample of urine was used to quantify albuminuria. Next, despite being nationally representative, the subset of NHANES with diabetes was relatively small, with a short duration of follow-up for mortality outcomes. Some of the vascular complications were self-reported, and insofar as reporting may vary by level of eGFR, this may lead to bias. Finally, persons with more severe kidney disease are likely underrepresented in NHANES, thus limiting accuracy in the very low ranges of GFR.
In summary, this study demonstrates that using cystatin C to classify kidney function among persons with diabetes results in a higher prevalence of reduced kidney function yet the same or stronger associations with vascular complications and mortality. Future studies are needed to determine whether incorporating cystatin C measurement into clinical care and kidney function estimation would improve outcomes in persons with diabetes.
ACKNOWLEDGEMENTS

This work was support by a grant from the National Kidney Foundation to Dr. Selvin. M.G. receives support from the National Institute of Diabetes and Digestive and Kidney Diseases (K08DK092287). M.G. and C.W. researched data and wrote the manuscript. E.S. contributed to the discussion and reviewed/edited the manuscript. L.I. reviewed and edited the manuscript. J.C. reviewed and edited the manuscript. The authors report no relevant conflicts of interest. M.G. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
REFERENCES

11. Astor BC, Levey AS, Stevens LA, Van Lente F, Selvin E, Coresh J. Method of
glomerular filtration rate estimation affects prediction of mortality risk. Journal of the
American Society of Nephrology 2009;20(10):2214-2222

12. Shlipak MG, Wassel Fyr CL, Chertow GM, Harris TB, Kritchevsky SB, Tylavsky FA,
Satterfield S, Cummings SR, Newman AB, Fried LF. Cystatin C and mortality risk in
Jan;17(1):254-261

Zhang YL, Coresh J, Levey AS. Factors other than glomerular filtration rate affect

Kouloukourgiotou T, Grekas D. Glomerular filtration rate estimation in patients with
type 2 diabetes: Creatinine- or cystatin C-based equations?. Diabetologia 2011
Dec;54(12):2987-2994

15. Silveiro SP, Araujo GN, Ferreira MN, Souza FD, Yamaguchi HM, Camargo EG. Chronic
kidney disease epidemiology collaboration (CKD-EPI) equation pronouncedly
underestimates glomerular filtration rate in type 2 diabetes. Diabetes Care 2011
Nov;34(11):2353-2355

Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med
2012 Jul 5;367(1):20-29

Eggers P, Van Lente F, Greene T, Coresh J, CKD-EPI (Chronic Kidney Disease
Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann
Intern Med 2009 May 5;150(9):604-612

19. Centers for Disease Control and Prevention (CDC). Survey operations manuals,
brochures, and consent documents: 1999-2000 NHANES. lower extremity disease

20. Feringa HH, Bax JJ, van Wanig VH, Boersma E, Elhendy A, Schouten O, Tangelder
MJ, van Sambeek MH, van den Meiracker AH, Poldermans D. The long-term prognostic
value of the resting and postexercise ankle-brachial index. Arch Intern Med 2006 Mar
13;166(5):529-535

Calibration of serum creatinine in the national health and nutrition examination surveys

<table>
<thead>
<tr>
<th></th>
<th>No Diabetes (N=3,679)</th>
<th>Diabetes (N=778)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>45.2 (0.4)</td>
<td>58.2 (1.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Male, %</td>
<td>47.9 (1.2)</td>
<td>55.8 (3.2)</td>
<td>0.03</td>
</tr>
<tr>
<td>Race/Ethnicity, %</td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>73.0 (2.1)</td>
<td>62.1 (3.8)</td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>10.2 (1.2)</td>
<td>17.2 (3.1)</td>
<td></td>
</tr>
<tr>
<td>Mexican American</td>
<td>7.0 (0.9)</td>
<td>7.1 (1.5)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>9.8 (1.9)</td>
<td>13.6 (3.6)</td>
<td></td>
</tr>
<tr>
<td>Self-reported diabetes or medication use, %</td>
<td>-</td>
<td>79.5(2.5)</td>
<td></td>
</tr>
<tr>
<td>Hemoglobin A1c (mean, %)</td>
<td>5.3 (0.02)</td>
<td>7.7 (0.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>33.4 (1.4)</td>
<td>63.8 (3.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic blood pressure (mean, mmHg)</td>
<td>122.8 (0.6)</td>
<td>132.9 (1.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diastolic blood pressure (mean, mmHg)</td>
<td>72.2 (0.4)</td>
<td>71.0(1.0)</td>
<td>0.3</td>
</tr>
<tr>
<td>Body Mass Index, kg/m²</td>
<td>27.8 (0.2)</td>
<td>31.6 (0.6)</td>
<td><0.001</td>
</tr>
<tr>
<td><25, %</td>
<td>37.7 (1.5)</td>
<td>18.6 (3.2)</td>
<td><0.001</td>
</tr>
<tr>
<td>25-<30, %</td>
<td>34.2 (1.5)</td>
<td>31.4 (2.9)</td>
<td></td>
</tr>
<tr>
<td>30-35, %</td>
<td>15.8 (0.7)</td>
<td>22.1 (2.8)</td>
<td></td>
</tr>
<tr>
<td>>35</td>
<td>12.3 (1.1)</td>
<td>27.9 (3.2)</td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mean, mg/dL)</td>
<td>202.2 (1.2)</td>
<td>202.6 (2.8)</td>
<td>0.8</td>
</tr>
<tr>
<td>HDL-cholesterol (mean, mg/dL)</td>
<td>51.5 (0.4)</td>
<td>45.7 (0.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Albumin:creatinine ratio (ACR)(mean, mg/g)</td>
<td>23.4 (3.0)</td>
<td>185.7 (30.3)</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR<60 ml/min/1.73m² (mean, ml/min/1.73m²)</td>
<td>95.1 (0.6)</td>
<td>85.5 (1.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR<60 ml/min/1.73m², %</td>
<td>100.7 (0.8)</td>
<td>84.3 (2.6)</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR<60 ml/min/1.73m², %</td>
<td>5.8 (0.4)</td>
<td>16.5 (1.4)</td>
<td><0.001</td>
</tr>
<tr>
<td>eGFR<60 ml/min/1.73m², %</td>
<td>7.9 (0.6)</td>
<td>22.0 (2.1)</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Table 2. Adjusted prevalence ratios (95% confidence intervals) for categories of kidney function with complications of diabetes, by filtration marker, among U.S. adults with diabetes (N=778)*

<table>
<thead>
<tr>
<th></th>
<th>Coronary Artery Disease</th>
<th>Peripheral arterial disease**</th>
<th>Albuminuria†</th>
<th>Retinopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFRcre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>90</td>
<td>1.1 (0.7-1.6)</td>
<td>0.9 (0.4-1.9)</td>
<td>0.97 (0.6-1.7)</td>
<td>1.8 (0.9-3.4)</td>
</tr>
<tr>
<td>60-90</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
</tr>
<tr>
<td>30-60</td>
<td>1.4 (1.0-1.9)</td>
<td>1.7 (0.9-3.5)</td>
<td>1.7 (1.2-2.3)</td>
<td>1.9 (1.2-3.0)</td>
</tr>
<tr>
<td>15-30</td>
<td>2.8 (1.4-5.6)</td>
<td>2.7 (0.8-8.8)</td>
<td>2.3 (1.4-3.6)</td>
<td>3.9 (2.0-7.8)</td>
</tr>
<tr>
<td>eGFRcys</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>90</td>
<td>0.8 (0.4-1.5)</td>
<td>0.8 (0.3-2.1)</td>
<td>1.0 (0.6-1.7)</td>
<td>0.6 (0.3-1.4)</td>
</tr>
<tr>
<td>60-90</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
</tr>
<tr>
<td>30-60</td>
<td>1.2 (0.8-1.6)</td>
<td>1.4 (0.7-2.8)</td>
<td>2.2 (1.5-3.2)</td>
<td>1.1 (0.6-1.9)</td>
</tr>
<tr>
<td>15-30</td>
<td>2.4 (1.4-4.1)</td>
<td>1.9 (0.5-7.3)</td>
<td>3.1 (2.0-4.8)</td>
<td>2.1 (1.2-3.9)</td>
</tr>
</tbody>
</table>

*All analyses adjusted for age, sex, race, hypercholesterolemia, low HDL, smoking, hypertension, body mass index, albuminuria (except model of albuminuria). Insufficient numbers in eGFR<15 category to accurately estimate.

**Limited to adults aged 40 years or older with ankle-brachial index measurements.

Abbreviations: eGFRcre, estimated glomerular filtration rate using the 2009 CKD-EPI creatinine equation (23); eGFRcys, estimated glomerular filtration rate using the 2012 CKD-EPI cystatin C equation (22).
Table 3. Adjusted hazard ratios (95% confidence intervals) for categories of kidney function with all-cause and cardiovascular mortality, by filtration marker, among U.S. adults with diabetes (N=778)

<table>
<thead>
<tr>
<th></th>
<th>Number at risk</th>
<th>All-cause mortality (N= 153 events)</th>
<th>Cardiovascular mortality (N=63 events)</th>
</tr>
</thead>
<tbody>
<tr>
<td>eGFRcr (ml/min/1.73m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>90</td>
<td>243</td>
<td>0.7 (0.2-3.5)</td>
<td>0.1 (0.0-0.8)</td>
</tr>
<tr>
<td>60-90</td>
<td>336</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
</tr>
<tr>
<td>30-60</td>
<td>162</td>
<td>1.8 (1.0-3.2)</td>
<td>1.8 (0.6-5.4)</td>
</tr>
<tr>
<td>15-30</td>
<td>23</td>
<td>2.6 (1.1-6.4)</td>
<td>2.0 (0.5-7.9)</td>
</tr>
<tr>
<td>eGFRcys (ml/min/1.73m²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>90</td>
<td>241</td>
<td>0.5 (0.2-1.1)</td>
<td>0.7 (0.1-3.8)</td>
</tr>
<tr>
<td>60-90</td>
<td>289</td>
<td>1.0 (Ref)</td>
<td>1.0 (Ref)</td>
</tr>
<tr>
<td>30-60</td>
<td>191</td>
<td>1.5 (0.6-3.3)</td>
<td>1.3 (0.5-3.2)</td>
</tr>
<tr>
<td>15-30</td>
<td>39</td>
<td>3.8 (1.5-9.9)</td>
<td>5.3 (1.6-17.3)</td>
</tr>
</tbody>
</table>

*All analyses adjusted for age, sex, race, smoking, hypertension, coronary artery disease, hypercholesterolemia, low HDL, albuminuria, BMI. Insufficient numbers in eGFR<15 category to accurately estimate.

Abbreviations: eGFRcr, estimated glomerular filtration rate using the 2009 CKD-EPI creatinine equation (23); eGFRcys, estimated glomerular filtration rate using the 2012 CKD-EPI cystatin C equation (22).
Figure 1. Prevalence of microvascular and macrovascular conditions among U.S. adults with diabetes, according to the presence or absence of reduced kidney function (estimated using creatinine and cystatin C)
Diabetes Care
Supplemental Table S1. Comparison of the classification of reduced kidney function among the population with diabetes (A) and without diabetes (B) according to filtration marker, U.S. adults 20 years or older, NHANES 1999-2002

(A) Diabetes (N=778)

<table>
<thead>
<tr>
<th>eGFRcys (ml/min/1.73 m²)</th>
<th>≥ 60</th>
<th>< 60</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 60</td>
<td>74.9%</td>
<td>3.1%</td>
<td>78.0%</td>
</tr>
<tr>
<td><60</td>
<td>8.7%</td>
<td>13.3%</td>
<td>22.0%</td>
</tr>
<tr>
<td>Total</td>
<td>83.6%</td>
<td>16.4%</td>
<td>100%</td>
</tr>
</tbody>
</table>

(B) No Diabetes (N=3,679)

<table>
<thead>
<tr>
<th>eGFRcys (ml/min/1.73 m²)</th>
<th>≥ 60</th>
<th>< 60</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 60</td>
<td>90.8%</td>
<td>1.3%</td>
<td>92.1%</td>
</tr>
<tr>
<td><60</td>
<td>3.4%</td>
<td>4.5%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Total</td>
<td>94.2%</td>
<td>5.8%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Supplemental Table S2. The association between diabetes status and reclassification from preserved kidney function by eGFR_{cr} to reduced kidney function by eGFR_{cys} with sequential adjustment for eGFR_{cr}, body mass index (BMI), age, and albuminuria*

<table>
<thead>
<tr>
<th>Model</th>
<th>Odds ratio for diabetes (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted</td>
<td>3.1 (1.9-4.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>+ eGFR_{cr}</td>
<td>2.3 (1.5-3.8)</td>
<td>0.001</td>
</tr>
<tr>
<td>+ eGFR_{cr}, BMI</td>
<td>2.0 (1.2-3.4)</td>
<td>0.008</td>
</tr>
<tr>
<td>+ eGFR_{cr}, BMI, age</td>
<td>1.4 (0.9-2.3)</td>
<td>0.2</td>
</tr>
<tr>
<td>+ eGFR_{cr}, BMI, age, albuminuria*</td>
<td>1.2 (0.7-2.1)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

*modeled as albumin-to-creatinine ratio >30 mg/g (yes, no)
Supplemental Figure S1. Prevalence of reduced kidney function (eGFR<60 ml/min/1.73 m²) by filtration marker and subgroups defined by sex, race, age and body mass index category, U.S. adults 20 years or older with diabetes, NHANES 1999-2002 (N=778)
Supplemental Figure S2. Probability of prevalent coronary artery disease (A), peripheral arterial disease (B), albuminuria (C), or retinopathy (D) by level of GFR estimating using serum creatinine (black line, with 95% CI) and serum cystatin C (red line, with 95% CI) among adult participants with diabetes (N=778)

(A) Coronary artery disease

(B) Peripheral arterial disease (ankle brachial index < 0.90)
(C) Albuminuria (albumin-to-creatinine ratio >30 mg/g)

(D) Retinopathy