Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis

Short title: Sleep disturbances and type 2 diabetes

Francesco P Cappuccio FRCP¹, Lanfranco D’Elia MD², Pasquale Strazzullo MD² and Michelle A Miller PhD¹

¹University of Warwick, Warwick Medical School, Clinical Sciences Research Institute, Coventry, CV2 2DX, UK; ²Department of Clinical and Experimental Medicine, “Federico II” University of Naples Medical School, Naples, Italy.

Address for correspondence:
Prof. Francesco P. Cappuccio
e-mail: f.p.cappuccio@warwick.ac.uk

Submitted 22 June 2009 and Accepted 30 October 2009.

Additional information for this article can be found in an online appendix at http://care.diabetesjournals.org

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objectives. To assess the relationship between habitual sleep disturbances and the incidence of type 2 diabetes, and to obtain an estimate of the risk.

Research Design and Methods. Systematic search of publications using MEDLINE (1955-April 2009), EMBASE, the Cochrane Library and manual searches without language restrictions. We included studies if they were prospective, with follow-up >3 years, had an assessment of sleep disturbances at baseline and incidence of type 2 diabetes. We recorded several characteristics for each study. We extracted quantity and quality of sleep, how they were assessed, and incident cases defined with different validated methods. We extracted relative risks (RR) and 95% C.I. and pooled them using random effects models. We performed sensitivity analysis, and assessed heterogeneity and publication bias.

Results. We included ten studies (13 independent cohort samples; 107,756 male and female participants, follow-up range 4.2 to 32 years, 3,586 incident cases of type 2 diabetes). In pooled analyses, quantity and quality of sleep predicted the risk of developing type-2 diabetes. For short duration of sleep (<5-to-6h per night) the RR was 1.28; 95% CI 1.03 to 1.60; p=0.024 (heterogeneity p=0.015); for long duration of sleep (>8-to-9h per night) 1.48 (1.13 to 1.96; p=0.005); for difficulty in initiating sleep 1.57 (1.25 to 1.97; p<0.0001) and for difficulty in maintaining sleep 1.84 (1.39 to 2.43; p=0.0001).

Conclusions. Quantity and quality of sleep consistently and significantly predict the risk of the development of type 2 diabetes. The mechanisms underlying such relation may differ between short and long sleepers.
Sleep patterns of quantity and quality are affected by a variety of cultural, social, psychological, behavioral, pathophysiological and environmental influences. Changes in modern society include longer working hours, more shift-work and 24-7 availability of commodities. These changes are paralleled by secular trends of curtailed duration of sleep to fewer hours per day across westernized populations (1). These trends have led to increased reporting of fatigue, tiredness and excessive daytime sleepiness (2). Lack of sleep exerts deleterious effects on a variety of systems with detectable changes in metabolic (3,4), endocrine (5,6) and immune pathways (7).

Short-term, acute, laboratory and cross-sectional observational studies indicate that disturbed or reduced sleep is associated with glucose intolerance, insulin resistance, reduced acute insulin response to glucose and reduction in the disposition index (4), thus predisposing to type 2 diabetes. The causality of the association and the generalizability of the results to longer-term effects of sustained sleep disturbances have been studied in prospective population studies to establish a temporal sequence between exposure and outcome. Due to large differences in the types and sizes of populations examined, the duration of follow-up and the size of the effects, it is difficult to draw immediate conclusions on the consistency of the associations and the size of effect. Our aim was to review published prospective population-based studies to assess whether the global evidence supports the presence of a relationship between sleep disturbances (in quantity and quality) and the development of type 2 diabetes, and to obtain a quantitative estimate of the risk.

RESEARCH DESIGN AND METHODS

Literature search: We developed a search strategy to identify studies that reported the association between sleep disturbances and incidence of type 2 diabetes. We searched the electronic databases MEDLINE (from 1955 to April 2009) and EMBASE (from 1980) as well as the Cochrane Library using the terms ‘sleep’ and ‘diabetes’ and ‘prospective’ or ‘cohort’ or ‘longitudinal’. Furthermore, we reviewed reference lists of original and review articles to search for more studies. No language restriction was applied. After electronic identification of 1,553 potentially relevant papers, 175 were identified for additional scrutiny. Final exclusions were made through perusal of abstracts (Online Appendix 1 Which can be found in an online appendix at http://care.diabetesjournals.org).

Inclusion and exclusion criteria: Studies had to fulfil the following criteria for inclusion: original article, prospective design, assessment of sleep disturbances (short or long duration as well as difficulty in initiating or maintaining sleep) as baseline exposure, incidence cases of type 2 diabetes as outcome, follow-up of at least 3 years, adult population, indication of the number of subjects exposed and of the rate or number of incident cases in different sleep disturbance categories. No sample size restriction was applied. Studies were excluded if a case-control design was used. If multiple published reports from the same study were available, we included only the one with the most detailed information for both exposure and outcome.

Data extraction: Data were extracted independently by two investigators (FPC and LD) and differences were resolved by discussion and consensus with either PS or MAM. Relevant data included the first author’s surname, year of publication, country of origin of the population studied, recruitment year, number of participants,
number of incident cases of type 2 diabetes in each group, participants’ age, gender, duration of follow-up, method used to measure sleep disturbance, reference category, category for ‘short’ and ‘long’ sleep, outcome assessment, reported relative risks (8-14) or hazard ratios (15-17) of type 2 diabetes by sleep category, corresponding 95% CI and covariates adjusted in the original statistical analysis.

Definition of sleep disturbance:
Duration of sleep was assessed by self-reported habitual sleep duration using questionnaires (in one study by direct interview (10)). Short sleep was defined as \(\leq 5 \text{h} \) (8,11-13), \(<6 \text{h} \) (10,15) or \(<7 \text{h} \) per night (14). Long sleep was defined as \(>8 \text{h} \) (12,15) or \(>9 \text{h} \) (8,11,13,14) per night. Difficulty of initiating or maintaining sleep was assessed by questionnaire (Table 1). The latter measures are components of sleep quality. Sleep maintenance reflects sleep consolidation.

Statistical analysis: The quality of the studies included in the meta-analysis was evaluated by the Downs & Black Quality Index score system (18), a validated checklist for assessing the quality of both randomized clinical trials and non-randomized studies. It consists of several items distributed between five sub-scales: reporting, external validity, bias, confounding and power. For the assessment of non-randomized, prospective studies the maximum score is 19. Relative risks (RR) or hazard ratios (HR) were extracted from the selected publications and were used to measure the relationship between sleep disturbances and the incidence of type 2 diabetes. Their standard errors were calculated from the respective confidence intervals. The value from each study and the corresponding standard error were transformed into their natural logarithms to stabilize the variances and to normalize their distribution. We estimated the pooled RR (and 95% C.I.) using a random effects model.

By comparison with the reference category of sleep disturbance, we estimated the pooled risk and 95% CI of developing type 2 diabetes for the ‘short’ and for the ‘long’ sleep category, and for difficulty in initiating or maintaining sleep, separately. Heterogeneity among studies was tested by Q-statistics and quantified by \(I^2 \) and H-statistics (19). We also carried out meta-regression using a random effect model (20). Funnel plot asymmetry was used to detect publication bias, with the application of Egger’s regression test (21). When indicated, we recalculated the combined estimate after imputation from the asymmetry of the funnel plot of the number of ‘missing’ studies and their effect sizes and standard errors, a method known as ‘trim and fill’ (21). The influence of individual studies was examined by omitting one or more study at a time to see the extent to which inferences depended on a particular study or group of studies (sensitivity analysis). Subgroup analysis was carried out to assess possible sources of statistical heterogeneity and to check for the potential impact of gender and duration of follow-up on the relationship between sleep disturbances and incidence of type 2 diabetes. All statistical analyses were performed using MIX software version 1.7 (22).

RESULTS

Characteristics: Ten studies (reporting on 13 cohorts) were included in the meta-analysis (8-17) (Online Appendix 1). When results were reported for men and women separately, they were entered into the analyses as separate cohorts. Table 1 summarises the characteristics of the studies. Overall, the systematic review included 107,756 participants. Five studies recruited both men and women (11,13-15,17), 2 studies only women (8,10) and 3 studies only men (9,12,16). Four studies were from Europe, 4 from the USA and 2 from Japan. One study reported results by ethnicity (14). The
Sleep disturbances and type 2 diabetes

The majority of studies were population-based cohorts (9-12, 17), 2 with multi-centre recruitment (8, 14), one was a national survey (13) and 2 were from occupational cohorts (15, 16). Median Quality Score Index was 16 (range 8 to 17). Median follow-up was 9.5 years (range 4.2 to 32 years). All studies assessed sleep disturbances by questionnaire. The methods to ascertain new cases of type 2 diabetes varied between studies; in 5 studies questionnaires were used (8, 9, 11, 15, 17), with additional validation (8, 9); in the other 5 studies more direct diagnostic criteria were used (10, 12-14, 16). The total number of incident cases of type 2 diabetes was 3,586. Of the 5 studies that included both men and women, 2 reported outcomes separately for men and women (11, 17). Overall, 9 cohorts reported data on the relationship between type 2 diabetes and ‘short’ sleep, 7 on ‘long’ sleep, 6 on ‘difficulty in initiating sleep’ and 6 on ‘difficulty in maintaining sleep’ (Table 1).

Short duration of sleep: Short duration of sleep was associated with a greater risk of developing type 2 diabetes (Figure 1a) with no evidence of publication bias (Online Appendix 2a). There was statistical heterogeneity between studies. The effect in men (2.07 [1.16 to 3.72]) tended to be larger than that in women (1.07 [0.90 to 1.28]) (Heterogeneity test: p=0.04). The effect was unaffected by the restriction of the analysis to studies defining short sleep as ≤5h and in which incident cases were assessed by questionnaire (n=5; 1.36 [1.10 to 1.68], p=0.004).

Long duration of sleep: Long duration of sleep was associated with a greater risk of type 2 diabetes (Figure 1b) with no evidence of publication bias (Online Appendix 2b) and no statistically significant heterogeneity. The effect was not altered by the restriction of the analysis to studies defining long sleep as >9h (n=5; 1.38 [1.15 to 1.65], p=0.0006) or to those in which incident cases were assessed by questionnaire (n=4; 1.59 [1.15 to 2.21], p=0.0053).

Difficulty in initiating sleep: Difficulty in initiating sleep was associated with a greater risk of type 2 diabetes (Figure 2a) with no evidence of publication bias (Online Appendix 2c), and no statistical heterogeneity. The effect was not altered by the restriction of the analysis to studies in which incident cases were assessed by direct clinical assessments (n=4; 1.58 [1.13 to 2.21, p=0.0082). The ‘trim and fill’ method imputed 2 studies with a revised estimate of 1.45 (1.13 to 1.86).

Difficulty in maintaining sleep: Difficulty in maintaining sleep was associated with a greater risk of type 2 diabetes (Figure 2b) with no evidence of publication bias (Online Appendix 2d), and no statistical heterogeneity. The effect was not altered by the restriction of the analysis to studies in which incident cases were assessed by direct clinical assessments (n=4; 1.67 [1.30 to 2.14, p<0.0001). The effect estimates were comparable in men (n=3, 207 incident cases, RR=2.29 [1.28 to 4.10], p=0.005) and women (n=2, 107 incident cases, RR=1.95 [1.22 to 3.12], p=0.005) (Heterogeneity test: p=0.68). The ‘trim and fill’ method imputed 2 studies with a revised estimate of 1.62 (1.18 to 2.24).

Duration of follow-up: The risk of developing type 2 diabetes showed an overall trend to increase with the duration of follow-up (Figure 3). The relative risk increments per year of follow-up were estimated at 2% for short sleep (1.02; 0.93 to 1.12) after the exclusion of an outlier (10) (coefficient before exclusion: 0.98 [0.96 to 1.01]), 7% for long sleep (1.07; 0.99 to 1.16), no increments for difficulty in initiating sleep (1.00; 0.95 to 1.05) and 12% (1.12; 1.00 to 1.24, p=0.04) for difficulty in maintaining sleep.

CONCLUSIONS

This study provides for the first time quantitative pooled estimates of the
associations between measures of quantity and quality of habitual sleep and the incidence of type 2 diabetes in studies around the world. It shows an unambiguous and consistent pattern of increased risk of developing type 2 diabetes at either end of the distribution of sleep duration, and with qualitative disturbances of sleep. The risk varies between 28% in people who report habitual sleep of less than 5-to-6h per night and 84% in those with difficulties in maintaining their sleep. The presence of little or no statistical heterogeneity between studies, the absence of publication bias and the high statistical power confer further strength to our results. The effects were, by and large, comparable in men and women (with the exception of short sleep), did not depend on the type of assessment of exposure and outcome nor on the definitions of short or long sleep. A large number of potential confounders, particularly age and body mass index were considered in the primary analyses. The effect tended to increase with the duration of follow-up.

These results are of interest for several reasons. First, the association is consistent in different populations. Although the meta-analysis detected some statistical heterogeneity between studies (in particular in the short sleep category), further sensitivity analysis and the absence of publication bias are in favour of similar effects across populations. Second, they indicate an effect size of potential public health relevance, consistent across genders and depending on the duration of follow-up.

Study limitations: First, with the exception of one study (16), all had a Black & Downs score between 15 and 18 out of 19, indicating high quality. Second, a meta-analysis of observational data cannot directly control for confounding. We made an attempt to allow for multiple confounding by including adjusted estimates from multivariate models from each contributing study. However, residual confounding and bias remain a possibility. For instance, low levels of physical activity or poor diet that are causally related to type 2 diabetes may have also influenced sleep patterns. Third, there was no evidence of publication bias. However, the results can only be representative of the studies included and may not be easily extrapolated to other settings. For instance, most studies were carried out in Europe, USA and Japan. They cannot therefore represent the wider populations across the globe, particularly those of the Indian sub-continent (where type 2 diabetes is highly prevalent) or from Africa. All studies used self-reported sleep disturbances (either as quantity or as quality of sleep). These methods have limitations in that often may not allow (unless explicitly built as additional questions) to differentiate time asleep from time in bed or to estimate number and duration of naps when assessing duration of sleep. On the other hand sleep studies using objective measures of sleep are not practical and often not feasible in large prospective population studies. Sleep diaries, actigraphy, and polysomnography from some large population and small-scale investigations have shown good correlations between subjective estimates of sleep duration and more direct assessments (23-25). Furthermore, assessments of sleep durations in the primary health care setting, when collected, rely exclusively on self-reported data from patients.

Quantity and quality of sleep were assessed at one point in time in all studies. A single measure of exposure may not fully capture the sustained effects of sleep disruption over time on long-term morbidity. The studies analyzed did not always exclude subjects with obstructive sleep apnea-hypopnea syndrome (OSAS). These represent ~4% of middle-aged men and ~2% of middle-aged women (26,27). OSAS is associated with obesity, short and disrupted sleep, excessive daytime sleepiness and high rates of
Sleep disturbances and type 2 diabetes

morbidity and mortality, predominantly due to cardiovascular disease (28). Whilst it is possible that the presence of patients with OSAS may have contributed to the risk of type 2 diabetes, the adjustment for obesity or body mass index in almost every study would have, at least in part, corrected for this.

Gender-differences in the risk associated with duration of sleep have been reported (29-33). Our analysis was repeated after stratification by gender, wherever possible. No differences were detected between short duration of sleep, or difficulty in maintaining sleep, and the development of type 2 diabetes. Ideally long duration of follow-up would be needed to assess the influence of sleep on health over the life course (34). We excluded a priori studies with short follow-up (<3 years) to avoid that measurements of sleep quantity and quality would be too close to the diagnosis of type 2 diabetes. We included studies with follow-up ranging from 4.2 to 32 years. The effect size was directly related to the duration of follow-up for some measures of sleep disturbance, suggesting the possibility of a time-dependent cumulative effect. We were unable to stratify studies by age groups due to the inconsistent reporting of age in the original studies.

Potential mechanisms: Causative mechanisms relating sleep problems to adverse health outcomes include reciprocal changes in circulating levels of leptin and ghrelin (6,35). They in turn would increase appetite, caloric intake, reduce energy expenditure (3,4) and facilitate the development of obesity (4,6) and impaired glycemic control (36), increasing cardiovascular risk. Increased cortisol secretion and altered growth hormone metabolism have also been implicated (37). Low grade inflammation is activated during short sleep, with possible implications not only for cardiovascular disease (7) but also for other chronic conditions including cancer. The association of difficulty of initiating or maintaining sleep could be related to the same mechanisms, as expression of reduced total sleep duration. Finally, elevated levels of dopamine and symptoms of gastroesophageal reflux have recently been described as important contributors to difficulties in maintaining sleep and insomnia (38,39). Conversely, there is less clear indication of possible mechanisms mediating the effect of long duration of sleep as a cause of type 2 diabetes. Depressive symptoms, low socioeconomic status, unemployment, low level of physical activity, undiagnosed health conditions, poor general health have all been shown to be associated with long duration of sleep and to confound the association with morbidity as well as mortality (40).

Disrupted sleep, both in quantity and quality, should be regarded as a behavioral risk factor for the development of type 2 diabetes, heavily determined by the environment and possibly amenable to modification through both education and counselling as well as through favorable modifications of physical and working environments to allow sufficient sleep and avoid habitual and sustained sleep deprivation and disruption.

ACKNOWLEDGEMENTS

This work is part of the Programme ‘Sleep, Health & Society’ of the University of Warwick. We thank Mr Chen Ji for assistance with meta-regressions. Supported in part by an EC Grant (FP7-Health-2007-201550).

Authors’ Contribution: FPC conceived the study aims and design, contributed to the systematic review and data extraction, performed the analysis, interpreted the results and drafted the manuscript. LD, PS and MAM contributed to the data extraction, interpretation of results and to the revision of the manuscript.

Disclosure. The authors have no conflict of interest.
REFERENCES

Legends to figures and tables
Figure 1. Quantity of sleep and the risk of developing type 2 diabetes. Results are expressed as relative risk (RR) and 95% confidence intervals (95% CI). The size of squares is proportional to the weight of the study. n/a = not available
(a) Forest plot of the risk type 2 diabetes associated with short duration of sleep compared to the reference group in 9 population cohorts from 7 published prospective studies.
(b) Forest plot of the risk type 2 diabetes associated with long duration of sleep compared to the reference group in 7 population cohorts from 6 published prospective studies.

Figure 2. Quality of sleep and the risk of developing type 2 diabetes. Results are expressed as relative risk (RR) and 95% confidence intervals (95% CI). The size of squares is proportional to the weight of the study. n/a = not available
(a) Forest plot of the risk type 2 diabetes associated with difficulty in initiating sleep compared to none in 6 population cohorts from 5 published prospective studies.
(b) Forest plot of the risk type 2 diabetes associated with difficulty in maintaining sleep compared to none in 6 population cohorts from 4 published prospective studies.

Figure 3. Meta-regression of the risk of developing type 2 diabetes by duration of follow-up according to type of sleep disturbance. The size of circles is proportional to the weight of the study.
Table 1. Description of the studies included in the meta-analysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Cohort</th>
<th>Gender</th>
<th>Follow-up yrs</th>
<th>Age yrs</th>
<th>Quality Score</th>
<th>Exposure</th>
<th>Exposure assessment</th>
<th>Outcome Assessment</th>
<th>Incidence</th>
<th>Adjusted variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayas</td>
<td>NHS</td>
<td>Women</td>
<td>10.0</td>
<td>40-65</td>
<td>16</td>
<td>SD</td>
<td>Questionnaire</td>
<td>Validated questionnaire</td>
<td>2.95§</td>
<td>1,2,3,4,5,7,8,9</td>
</tr>
<tr>
<td>Kawakami</td>
<td>Electrical Co.</td>
<td>Men</td>
<td>8.0</td>
<td>n/a</td>
<td>8</td>
<td>DIS, DMS</td>
<td>Questionnaire</td>
<td>WHO criteria</td>
<td>1.68§</td>
<td>1,2,3,4,5,8</td>
</tr>
<tr>
<td>Nilsson</td>
<td>MPP</td>
<td>Men</td>
<td>15.2</td>
<td>Mean 46.2</td>
<td>17</td>
<td>DIS</td>
<td>Questionnaire</td>
<td>Questionnaire & FBG</td>
<td>4.3%§</td>
<td>1,3,4,5,8</td>
</tr>
<tr>
<td>Bjorkelund</td>
<td>Gothenburg</td>
<td>Women</td>
<td>32.0</td>
<td>38-60</td>
<td>15</td>
<td>SD</td>
<td>Interview</td>
<td>Multiple diagnoses</td>
<td>8.7%§</td>
<td>1</td>
</tr>
<tr>
<td>Mallon</td>
<td>Co. of Dalarna</td>
<td>Men Women</td>
<td>10</td>
<td>40-70</td>
<td>17</td>
<td>SD, DIS, DMS</td>
<td>Questionnaire</td>
<td>Questionnaire</td>
<td>9.1%, 6.1%§</td>
<td>1,3,4,6,7,8,9</td>
</tr>
<tr>
<td>Meisinger</td>
<td>MONICA</td>
<td>Men Women</td>
<td>7.5</td>
<td>25-74</td>
<td>17</td>
<td>DIS, DMS</td>
<td>Questionnaire</td>
<td>Self-reported validated</td>
<td>3.85, 2.18§</td>
<td>1,2,3,4,5,8</td>
</tr>
<tr>
<td>Yaggi</td>
<td>MMAS</td>
<td>Men</td>
<td>13 to 17</td>
<td>40-70</td>
<td>15</td>
<td>SD</td>
<td>Questionnaire</td>
<td>Evidence of diagnosis</td>
<td>6.11§</td>
<td>1,3,6,8</td>
</tr>
<tr>
<td>Gangwisch</td>
<td>NHANES I</td>
<td>Combined</td>
<td>8 to 10</td>
<td>32-86</td>
<td>16</td>
<td>SD</td>
<td>Questionnaire</td>
<td>Multiple methods</td>
<td>4.8%§</td>
<td>1,2,4,6,7,8</td>
</tr>
<tr>
<td>Hayashino</td>
<td>HIPOP-OHP</td>
<td>Combined</td>
<td>4.2</td>
<td>19-69</td>
<td>17</td>
<td>SD, DIS, DMS</td>
<td>Questionnaire</td>
<td>Multiple methods</td>
<td>3.5%§</td>
<td>1,2,3,6</td>
</tr>
<tr>
<td>Beihl</td>
<td>IRAS</td>
<td>Combined</td>
<td>5.0</td>
<td>40-69</td>
<td>15</td>
<td>SD</td>
<td>Questionnaire</td>
<td>OGTT</td>
<td>16.3%§</td>
<td>1,3,5,6,8</td>
</tr>
</tbody>
</table>

†Ref. 18; § DIS = Difficulty in Initiating Sleep; DMS = Difficulty in Maintaining Sleep; SD = Sleep Duration; ‡ 1 = Age, body mass and sex (when combined), 2 = leisure-time physical activity; 3 = smoking, 4 = alcohol consumption, 5 = Family history of diabetes, hypertension and high cholesterol, 6 = hypertension, 7 = depression, 8 = socio-economic variables, 9 = snoring; § per 1,000 person-years § cumulative incidence
Sleep disturbances and type 2 diabetes

Figure 1 a

(a) Short duration of sleep and incidence of type-2 diabetes

<table>
<thead>
<tr>
<th>Author (ref)</th>
<th>Year</th>
<th>Country</th>
<th>Sample size</th>
<th>Incident cases</th>
<th>Prevalence of short sleep</th>
<th>Short Sleep v Ref</th>
<th>Reference</th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayas²</td>
<td>2003</td>
<td>USA</td>
<td>70,026</td>
<td>1,969</td>
<td>4.3%</td>
<td>≤5h v 8h</td>
<td></td>
<td>1.19 (0.97 to 1.44)</td>
</tr>
<tr>
<td>Biorkelund¹⁰</td>
<td>2005</td>
<td>Sweden</td>
<td>1,462</td>
<td>126</td>
<td>6.8%</td>
<td><6h v >6h</td>
<td></td>
<td>0.97 (0.83 to 1.14)</td>
</tr>
<tr>
<td>Mallon (men)¹¹</td>
<td>2005</td>
<td>Sweden</td>
<td>550</td>
<td>50</td>
<td>6.9%</td>
<td>≤5h v 6-8h</td>
<td></td>
<td>2.80 (1.09 to 7.18)</td>
</tr>
<tr>
<td>Mallon (women)¹¹</td>
<td>2005</td>
<td>Sweden</td>
<td>620</td>
<td>38</td>
<td>7.1%</td>
<td>≤5h v 6-8h</td>
<td></td>
<td>1.80 (0.49 to 6.71)</td>
</tr>
<tr>
<td>Yaggi¹²</td>
<td>2006</td>
<td>USA</td>
<td>1,564</td>
<td>90</td>
<td>9.4%</td>
<td>≤5h v 7h</td>
<td></td>
<td>1.72 (0.81 to 3.61)</td>
</tr>
<tr>
<td>Gangwisch¹³</td>
<td>2007</td>
<td>USA</td>
<td>8,992</td>
<td>430</td>
<td>8.9%</td>
<td>≤5h v 7h</td>
<td></td>
<td>1.48 (1.04 to 2.11)</td>
</tr>
<tr>
<td>Hayashino¹⁵</td>
<td>2007</td>
<td>Japan</td>
<td>6,509</td>
<td>230</td>
<td>n/a</td>
<td><6h v 6-7h</td>
<td></td>
<td>1.15 (0.76 to 1.74)</td>
</tr>
<tr>
<td>Beihl (white)¹⁴</td>
<td>2009</td>
<td>USA</td>
<td>662</td>
<td>107</td>
<td>66%</td>
<td>≤7h v 8h</td>
<td></td>
<td>2.16 (1.22 to 3.81)</td>
</tr>
<tr>
<td>Beihl (black)¹⁴</td>
<td>2009</td>
<td>USA</td>
<td>238</td>
<td>39</td>
<td>84%</td>
<td>≤7h v 8h</td>
<td></td>
<td>0.47 (0.16 to 1.37)</td>
</tr>
<tr>
<td>Combined effect (random model):</td>
<td></td>
<td></td>
<td>90,623</td>
<td>3,079</td>
<td></td>
<td></td>
<td></td>
<td>1.28 (1.03 to 1.60)</td>
</tr>
</tbody>
</table>

Heterogeneity: I²=58% (11 to 80); Q=18.9, p=0.015
Publication bias: Egger’s test p=0.14

Figure 1 b

(b) Long duration of sleep and incidence of type-2 diabetes

<table>
<thead>
<tr>
<th>Author (ref)</th>
<th>Year</th>
<th>Country</th>
<th>Sample size</th>
<th>Incident cases</th>
<th>Prevalence of long sleep</th>
<th>Long Sleep v Ref</th>
<th>Reference</th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ayas²</td>
<td>2003</td>
<td>USA</td>
<td>70,026</td>
<td>1,969</td>
<td>4.5%</td>
<td>≥9h v 8h</td>
<td></td>
<td>1.28 (1.04 to 1.59)</td>
</tr>
<tr>
<td>Mallon (women)¹¹</td>
<td>2005</td>
<td>Sweden</td>
<td>620</td>
<td>38</td>
<td>2.7%</td>
<td>≥9h v 6-8h</td>
<td></td>
<td>2.89 (0.58 to 14.4)</td>
</tr>
<tr>
<td>Yaggi¹²</td>
<td>2006</td>
<td>USA</td>
<td>1,564</td>
<td>90</td>
<td>6.5%</td>
<td>≥9h v 7h</td>
<td></td>
<td>3.03 (1.44 to 6.39)</td>
</tr>
<tr>
<td>Gangwisch¹³</td>
<td>2007</td>
<td>USA</td>
<td>8,992</td>
<td>430</td>
<td>8.7%</td>
<td>≥9h v 7h</td>
<td></td>
<td>1.52 (1.07 to 2.17)</td>
</tr>
<tr>
<td>Hayashino¹⁵</td>
<td>2007</td>
<td>Japan</td>
<td>6,509</td>
<td>230</td>
<td>n/a</td>
<td>≥8h v 6-7h</td>
<td></td>
<td>1.03 (0.62 to 1.72)</td>
</tr>
<tr>
<td>Beihl (white)¹⁴</td>
<td>2009</td>
<td>USA</td>
<td>662</td>
<td>107</td>
<td>4.1%</td>
<td>≥9h v 8h</td>
<td></td>
<td>2.77 (0.89 to 8.64)</td>
</tr>
<tr>
<td>Beihl (black)¹⁴</td>
<td>2009</td>
<td>USA</td>
<td>238</td>
<td>39</td>
<td>3.4%</td>
<td>≥9h v 8h</td>
<td></td>
<td>0.36 (0.03 to 4.70)</td>
</tr>
<tr>
<td>Combined effect (random model):</td>
<td></td>
<td></td>
<td>88,611</td>
<td>2,903</td>
<td></td>
<td></td>
<td></td>
<td>1.48 (1.13 to 1.96)</td>
</tr>
</tbody>
</table>

Heterogeneity: I²=37% (0 to 74); Q=9.6, p=0.14
Publication bias: Egger’s test p=0.42
Sleep disturbances and type 2 diabetes

Figure 2 a

(a) Difficulty in initiating sleep and incidence of type-2 diabetes

<table>
<thead>
<tr>
<th>Author (ref)</th>
<th>Year</th>
<th>Country</th>
<th>Sample size</th>
<th>Incident cases</th>
<th>Prevalence of D.I.S.</th>
<th>D.I.S. v Ref</th>
<th>None</th>
<th>D.I.S.</th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nilsson⁹</td>
<td>2004</td>
<td>Sweden</td>
<td>6,599</td>
<td>281</td>
<td>9.3%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.52 (1.05 to 2.21)</td>
</tr>
<tr>
<td>Kawakami¹⁶</td>
<td>2004</td>
<td>Japan</td>
<td>2,265</td>
<td>38</td>
<td>n/a</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>2.97 (1.36 to 6.51)</td>
</tr>
<tr>
<td>Mallon (men)¹¹</td>
<td>2005</td>
<td>Sweden</td>
<td>550</td>
<td>50</td>
<td>4.4%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>2.41 (0.69 to 8.45)</td>
</tr>
<tr>
<td>Meisinger (men)¹⁷</td>
<td>2005</td>
<td>Germany</td>
<td>4,140</td>
<td>119</td>
<td>7.2%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.11 (0.59 to 2.07)</td>
</tr>
<tr>
<td>Meisinger (women)¹⁷</td>
<td>2005</td>
<td>Germany</td>
<td>4,129</td>
<td>69</td>
<td>13.7%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.42 (0.80 to 2.51)</td>
</tr>
<tr>
<td>Hayashino¹⁵</td>
<td>2007</td>
<td>Japan</td>
<td>6,509</td>
<td>230</td>
<td>8.0%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.62 (1.01 to 2.59)</td>
</tr>
</tbody>
</table>

Combined effect (random model): p<0.0001 24,192 787 1.57 (1.25 to 1.97)

Heterogeneity: I²=0% (0 to 75); Q=4.37, p=0.50
Publication bias: Egger’s test p=0.37

Figure 2 b

(b) Difficulty in maintaining sleep and incidence of type-2 diabetes

<table>
<thead>
<tr>
<th>Author (ref)</th>
<th>Year</th>
<th>Country</th>
<th>Sample size</th>
<th>Incident cases</th>
<th>Prevalence of D.M.S.</th>
<th>D.M.S. v Ref</th>
<th>None</th>
<th>D.M.S.</th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kawakami¹⁶</td>
<td>2004</td>
<td>Japan</td>
<td>2,265</td>
<td>38</td>
<td>n/a</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>2.23 (1.08 to 4.60)</td>
</tr>
<tr>
<td>Mallon (men)¹¹</td>
<td>2005</td>
<td>Sweden</td>
<td>550</td>
<td>50</td>
<td>8.4%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>4.81 (1.88 to 12.3)</td>
</tr>
<tr>
<td>Mallon (women)¹¹</td>
<td>2005</td>
<td>Sweden</td>
<td>620</td>
<td>38</td>
<td>11.9%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.80 (0.52 to 6.20)</td>
</tr>
<tr>
<td>Meisinger (men)¹⁷</td>
<td>2005</td>
<td>Germany</td>
<td>4,140</td>
<td>119</td>
<td>14.4%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.60 (1.04 to 2.46)</td>
</tr>
<tr>
<td>Meisinger (women)¹⁷</td>
<td>2005</td>
<td>Germany</td>
<td>4,129</td>
<td>69</td>
<td>19.0%</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.97 (1.19 to 3.29)</td>
</tr>
<tr>
<td>Hayashino¹⁵</td>
<td>2007</td>
<td>Japan</td>
<td>6,509</td>
<td>230</td>
<td>n/a</td>
<td>Yes v No</td>
<td>None</td>
<td></td>
<td>1.36 (0.87 to 2.14)</td>
</tr>
</tbody>
</table>

Combined effect (random model): p<0.0001 18,213 544 1.84 (1.39 to 2.43)

Heterogeneity: I²=22% (0 to 66); Q=6.38, p=0.27
Publication bias: Egger’s test p=0.15
Figure 3

Sleep disturbances and type 2 diabetes