Improved Pharmacokinetic and Pharmacodynamic Profile of Rapid-Acting Insulin Using Needle-Free Jet Injection Technology

  1. Bastiaan E. de Galan, PHD
  1. Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
  1. Corresponding author: Bastiaan E. de Galan, b.degalan{at}aig.umcn.nl.

Abstract

OBJECTIVE Insulin administered by jet injectors is dispensed over a larger subcutaneous area than insulin injected with a syringe, which may facilitate a more rapid absorption. This study compared the pharmacologic profile of administration of insulin aspart by jet injection to that by conventional insulin pen.

RESEARCH DESIGN AND METHODS Euglycemic glucose clamp tests were performed in 18 healthy volunteers after subcutaneous administration of 0.2 units/kg body wt of aspart, either administered by jet injection or by conventional pen, using a randomized, double-blind, double-dummy, cross over study design. Pharmacodynamic and pharmacokinetic profiles were derived from the glucose infusion rate (GIR) needed to maintain euglycemia and from plasma insulin levels, respectively.

RESULTS The time to maximal GIR was significantly shorter when insulin was injected with the jet injector compared with conventional pen administration (51 ± 3 vs. 105 ± 11 min, P < 0.0001). The time to peak insulin concentration was similarly reduced (31 ± 3 vs. 64 ± 6 min, P < 0.0001) and peak insulin concentrations were increased (108 ± 13 vs. 79 ± 7 mU/L, P = 0.01) when insulin was injected by jet injection compared with conventional pen injection. Jet injector insulin administration reduced the time to 50% glucose disposal by ∼40 min (P < 0.0001). There were no differences in maximal GIR, total insulin absorption, or total insulin action between the two devices.

CONCLUSIONS Administration of insulin aspart by jet injection enhances insulin absorption and reduces the duration of glucose-lowering action. This profile resembles more closely the pattern of endogenous insulin secretion and may help to achieve better meal insulin coverage and correction of postprandial glucose excursions.

  • Received January 28, 2011.
  • Accepted May 17, 2011.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.