White Matter Structural Differences in Young Children With Type 1 Diabetes: A Diffusion Tensor Imaging Study

  1. Bruce A. Buckingham, MD1
  1. 1Department of Pediatrics, Division of Pediatric Endocrinology and Diabetes, Stanford University School of Medicine, Stanford, California
  2. 2Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry, Stanford University School of Medicine, Stanford, California
  3. 3Hospital Educational Advocacy Liaisons Program, Lucile Packard Children’s Hospital, Stanford, California
  4. 4Department of Radiology, Stanford University School of Medicine, Stanford, California
  5. 5Department of Pediatrics, Stanford University School of Medicine, Stanford, California
  1. Corresponding author: Tandy Aye, taye{at}stanford.edu

Abstract

OBJECTIVES To detect clinical correlates of cognitive abilities and white matter (WM) microstructural changes using diffusion tensor imaging (DTI) in young children with type 1 diabetes.

RESEARCH DESIGN AND METHODS Children, ages 3 to <10 years, with type 1 diabetes (n = 22) and age- and sex-matched healthy control subjects (n = 14) completed neurocognitive testing and DTI scans.

RESULTS Compared with healthy controls, children with type 1 diabetes had lower axial diffusivity (AD) values (P = 0.046) in the temporal and parietal lobe regions. There were no significant differences between groups in fractional anisotropy and radial diffusivity (RD). Within the diabetes group, there was a significant, positive correlation between time-weighted HbA1c and RD (P = 0.028). A higher, time-weighted HbA1c value was significantly correlated with lower overall intellectual functioning measured by the full-scale intelligence quotient (P = 0.03).

CONCLUSIONS Children with type 1 diabetes had significantly different WM structure (as measured by AD) when compared with controls. In addition, WM structural differences (as measured by RD) were significantly correlated with their HbA1c values. Additional studies are needed to determine if WM microstructural differences in young children with type 1 diabetes predict future neurocognitive outcome.

  • Received January 4, 2012.
  • Accepted May 23, 2012.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

This Article

  1. Diabetes Care
  1. All Versions of this Article:
    1. dc12-0017v1
    2. 35/11/2167 most recent