Abstract
OBJECTIVE Insulin resistance and nonalcoholic fatty liver (NAFL) disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAFL−) or with (NAFL+) and nonalcoholic steatohepatitis (NASH), and 7 healthy lean individuals undergoing tissue biopsies during bariatric or elective abdominal surgery.
RESEARCH DESIGN AND METHODS Hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose were performed to quantify tissue-specific insulin sensitivity. Hepatic oxidative capacity, lipid peroxidation, and the phosphorylated-to-total c-Jun N-terminal kinase (pJNK-to-tJNK) ratio was measured to assess mitochondrial function, oxidative stress, and inflammatory activity.
RESULTS Hepatic total ceramides were higher by 50% and 33% in NASH compared with NAFL+ and NAFL−, respectively. Only in NASH were hepatic dihydroceramides (16:0, 22:0, and 24:1) and lactosylceramides increased. Serum total ceramides and dihydroceramides (hepatic dihydroceramides 22:0 and 24:1) correlated negatively with whole-body but not with hepatic insulin sensitivity. Hepatic maximal respiration related positively to serum lactosylceramides subspecies, hepatic sphinganine, and lactosylceramide 14:0. Liver lipid peroxides (total ceramides, sphingomyelin 22:0) and the pJNK-to-tJNK ratio (ceramide 24:0; hexosylceramides 22:0, 24:0, and 24:1) all positively correlated with the respective hepatic sphingolipids.
CONCLUSIONS Sphingolipid species are not only increased in insulin-resistant humans with NASH but also correlate with hepatic oxidative stress and inflammation, suggesting that these lipids may play a role during progression of simple steatosis to NASH in humans.
Footnotes
This article contains Supplementary Data online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc17-1318/-/DC1.
- Received July 1, 2017.
- Accepted March 6, 2018.
- © 2018 by the American Diabetes Association.
Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at http://www.diabetesjournals.org/content/license.
Log in using your username and password
Pay Per Article - You may access this article (from the computer you are currently using) for 1 day for US$35.00
Regain Access - You can regain access to a recent Pay per Article purchase if your access period has not yet expired.