Skip to main content
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes Care

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes Care
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Review Articles

Glucose Transport and NIDDM

  1. W Timothy Garvey, MD
  1. Section of Endocrinology, Indianapolis Veterans Administration Medical Center Indianapolis; and The Department of Medicine, Indiana University School of Medicine Indianapolis, Indiana
  1. Address Correspondence and Reprint Requests to W. Timothy Garvey, MD, Indiana University School of Medicine, VA Hospital, 111-E, 1481 West 10th Street, Indianapolis, IN 46202.
Diabetes Care 1992 Mar; 15(3): 396-417. https://doi.org/10.2337/diacare.15.3.396
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Three major metabolic abnormalities contribute to hyperglycemia in non-insulin-dependent diabetes mellitus (NIDDM) including defective glucose-induced insulin secretion, elevated rates of hepatic glucose output, and insulin's impaired ability to stimulate glucose uptake in peripheral target tissues (insulin resistance). These functions involve cellular glucose transport in β-cells, liver, adipose tissue, and skeletal muscle; and, in some instances, abnormalities in glucose transporter isoforms (GLUT) specifically expressed in these tissues may constitute key biochemical lesions underlying defective glucose homeostasis. In animal models of NIDDM, suppression of GLUT2 in β-cells is correlated with loss of high-Km glucose transport and glucose-sensitive insulin secretion. Although there are no data on humans with NIDDM, GLUT2 loss would constitute an attractive mechanism for defective glucose sensing in β-cells if it can be shown that transport then becomes rate limiting for glucose metabolism. In the liver, however, hepatocyte glucose transport via GLUT2 probably plays only a permissive role in sustaining increased glucose efflux. Peripheral insulin resistance is associated with decreased glucose transport activity, the likely rate-limiting step for glucose uptake in fat and muscle. Accordingly, the insulin-responsive GLUT4 isoform expressed exclusively in insulin target tissues has been studied intensively in NIDDM. In these studies, pretranslational suppression of GLUT4 appears to be the key mechanism of insulin resistance in adipocytes. However, levels of GLUT4 protein and mRNA are normal in vastus lateralis and rectus abdominis, inferring that defects in GLUT4 functional activity or insulin-mediated translocation cause insulin resistance in muscle. Thus, the intensified study of glucose transport has provided important new insights into NIDDM pathogenesis over the past 5 yr and has presented investigators with additional intriguing hypotheses.

  • Copyright © 1992 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

March 1992, 15(3)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Glucose Transport and NIDDM
(Your Name) has forwarded a page to you from Diabetes Care
(Your Name) thought you would like to see this page from the Diabetes Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Glucose Transport and NIDDM
W Timothy Garvey
Diabetes Care Mar 1992, 15 (3) 396-417; DOI: 10.2337/diacare.15.3.396

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Glucose Transport and NIDDM
W Timothy Garvey
Diabetes Care Mar 1992, 15 (3) 396-417; DOI: 10.2337/diacare.15.3.396
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Gene-Environment and Gene-Treatment Interactions in Type 2 Diabetes
  • Relationships Between Gastric Emptying, Postprandial Glycemia, and Incretin Hormones
  • Retinal Vascular Caliber as a Biomarker for Diabetes Microvascular Complications
Show more Review Articles

Similar Articles

Navigate

  • Current Issue
  • Standards of Care Guidelines
  • Online Ahead of Print
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Care Print ISSN: 0149-5992, Online ISSN: 1935-5548.