Skip to main content
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • Log out
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes Care

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Diabetes Care
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Biguanides and NIDDM

  1. Clifford J Bailey, PHD
  1. Department of Pharmaceutical Sciences, Aston University Birmingham, United Kingdom
  1. Address Correspondence and Reprint Requests to Dr. C. J. Bailey, Department of Pharmaceutical Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
Diabetes Care 1992 Jun; 15(6): 755-772. https://doi.org/10.2337/diacare.15.6.755
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

The main biguanides, metformin and phenformin, were introduced in 1957 as oral glucose-lowering agents to treat non-insulin-dependent diabetes mellitus (NIDDM). Phenformin was withdrawn in many countries because of an association with lactic acidosis, but metformin does not have the same risk if appropriately prescribed. Metformin is now widely used as a monotherapy and in combination with a sulfonylurea. Unlike sulfonylureas, metformin is not bound to plasma proteins, is not metabolized, and is eliminated rapidly by the kidney. The glucose-lowering effect occurs without stimulation of insulin secretion and results mainly from increased glucose utilization. The presence of insulin is required, and enhancement of insulin action at the postreceptor level occurs in peripheral tissues such as muscle. In peripheral tissues metformin increases insulin-mediated glucose uptake and oxidative metabolism. Metformin also increases glucose utilization by the intestine, primarily via nonoxidative metabolism. The extra lactate produced is largely extracted by the liver and serves as a substrate to sustain gluconeogenesis. This limits the extent to which metformin reduces hepatic glucose production but provides a safeguard against excessive glucose lowering. Because metformin does not cause clinical hypoglycemia, it is actually an antihyperglycemic drug. It does not cause weight gain, it helps combat hypertriglyceridemia, and it has been ascribed some vasoprotective properties. Metformin offers a useful treatment for insulin-resistant overweight NIDDM patients.

  • Copyright © 1992 by the American Diabetes Association
PreviousNext
Back to top

In this Issue

June 1992, 15(6)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Biguanides and NIDDM
(Your Name) has forwarded a page to you from Diabetes Care
(Your Name) thought you would like to see this page from the Diabetes Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Biguanides and NIDDM
Clifford J Bailey
Diabetes Care Jun 1992, 15 (6) 755-772; DOI: 10.2337/diacare.15.6.755

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Biguanides and NIDDM
Clifford J Bailey
Diabetes Care Jun 1992, 15 (6) 755-772; DOI: 10.2337/diacare.15.6.755
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Genetics of Gestational Diabetes Mellitus and Type 2 Diabetes
  • Modified Therapy for Gestational Diabetes Using High-Risk and Low-Risk Fetal Abdominal Circumference Growth to Select Strict Versus Relaxed Maternal Glycemic Targets
  • Increasing Prevalence of Gestational Diabetes Mellitus
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Standards of Care Guidelines
  • Online Ahead of Print
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Care Print ISSN: 0149-5992, Online ISSN: 1935-5548.