Skip to main content
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes Care

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes Care
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Emerging Treatments and Technologies

Improvement in Glycemic Excursions With a Transcutaneous, Real-Time Continuous Glucose Sensor

A randomized controlled trial

  1. Satish Garg, MD1,
  2. Howard Zisser, MD2,
  3. Sherwyn Schwartz, MD3,
  4. Timothy Bailey, MD4,
  5. Roy Kaplan, MD5,
  6. Samuel Ellis, PHARMD1 and
  7. Lois Jovanovic, MD2
  1. 1Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, Colorado
  2. 2Sansum Diabetes Research Institute, Santa Barbara, California
  3. 3Diabetes & Glandular Disease Research Associates, San Antonio, Texas
  4. 4North County Endocrine Group, Escondido, California
  5. 5East Bay Clinical Trial Center, Concord, California
  1. Address correspondence and reprint requests to Satish Garg, MD, Professor of Medicine and Pediatrics, Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, 1775 N. Ursula St., A140, Aurora, CO 80010. E-mail: satish.garg{at}uchsc.edu
Diabetes Care 2006 Jan; 29(1): 44-50. https://doi.org/10.2337/diacare.29.01.06.dc05-1686
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading

Abstract

OBJECTIVE—Hypoglycemia and wide glucose excursions continue to be major obstacles to achieving target HbA1c values and the associated reductions in long-term complications (and economic costs) in people with insulin-treated diabetes. In this study we evaluated the accuracy, safety, and clinical effectiveness of a continuous glucose-sensing device.

RESEARCH DESIGN AND METHODS—A total of 91 insulin-requiring patients with type 1 (n = 75) and type 2 (n = 16) diabetes were enrolled in this multicenter randomized study. Subjects wore a transcutaneous, 3-day, continuous glucose-sensing system for three consecutive 72-h periods. Subjects were randomly assigned (1:1 ratio) to either a control group (continuous glucose data not provided) or a display group (continuous glucose data not provided during period 1 but displayed during periods 2 and 3). During periods 2 and 3, patients in the display group had real-time access to sensor glucose values, could review glucose trends over the preceding 1, 3, and 9 h, and were provided with high (≥200 mg/dl) and low (≤80 mg/dl) alerts and a low (≤55 mg/dl) alarm. Sensors were inserted by patients, and both groups used (or wore) the system during daily activities. Device accuracy was assessed by comparing continuous glucose values to paired self-monitoring of blood glucose (SMBG) meter readings. Clinical effectiveness was evaluated by analyzing between-group (control vs. display, periods 2 and 3) and within-group (display, period 1 vs. period 3) differences in time spent in high, low, and target (81–140 mg/dl) glucose zones.

RESULTS—When prospective, real-time sensor values were compared with SMBG values, 95.4% of 6,767 paired glucose values fell within Clarke error grid A and B zones. Pearson’s correlation coefficient was 0.88, and mean and median absolute relative differences were 21.2 and 15.9%, respectively. No systematic bias was detected at any of the prespecified glucose levels (50, 80, 100, 150, and 200 mg/dl). When compared with control subjects, the display group spent 21% less time as hypoglycemic (<55 mg/dl), 23% less time as hyperglycemic (≥240 mg/dl), and 26% more time in the target (81–140 mg/dl) glucose range (P < 0.001 for each comparison). Nocturnal (10:00 p.m. to 6:00 a.m.) hypoglycemia, as assessed at two thresholds, was also reduced by 38% (<55 mg/dl; P < 0.001) and 33% (55–80 mg/dl; P < 0.001) in the display group compared with control subjects.

CONCLUSIONS—We conclude that real-time continuous glucose monitoring for periods up to 72 h is accurate and safe in insulin-requiring subjects with type 1 and type 2 diabetes. This study demonstrates that availability of real-time, continuously measured glucose levels can significantly improve glycemic excursions by reducing exposure to hyperglycemia without increasing the risk of hypoglycemia, which may reduce long-term diabetes complications and their associated economic costs.

  • ARD, absolute relative difference
  • DCCT, Diabetes Control and Complications Trial
  • SMBG, self-monitoring of blood glucose
  • Received September 8, 2005.
  • Accepted October 3, 2005.
  • DIABETES CARE
View Full Text
PreviousNext
Back to top
Diabetes Care: 29 (1)

In this Issue

January 2006, 29(1)
  • Table of Contents
  • About the Cover
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Improvement in Glycemic Excursions With a Transcutaneous, Real-Time Continuous Glucose Sensor
(Your Name) has forwarded a page to you from Diabetes Care
(Your Name) thought you would like to see this page from the Diabetes Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Improvement in Glycemic Excursions With a Transcutaneous, Real-Time Continuous Glucose Sensor
Satish Garg, Howard Zisser, Sherwyn Schwartz, Timothy Bailey, Roy Kaplan, Samuel Ellis, Lois Jovanovic
Diabetes Care Jan 2006, 29 (1) 44-50; DOI: 10.2337/diacare.29.01.06.dc05-1686

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Improvement in Glycemic Excursions With a Transcutaneous, Real-Time Continuous Glucose Sensor
Satish Garg, Howard Zisser, Sherwyn Schwartz, Timothy Bailey, Roy Kaplan, Samuel Ellis, Lois Jovanovic
Diabetes Care Jan 2006, 29 (1) 44-50; DOI: 10.2337/diacare.29.01.06.dc05-1686
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Autologous Umbilical Cord Blood Transfusion in Young Children With Type 1 Diabetes Fails to Preserve C-Peptide
  • Effects of MK-0941, a Novel Glucokinase Activator, on Glycemic Control in Insulin-Treated Patients With Type 2 Diabetes
  • Diabetes Antibody Standardization Program
Show more Emerging Treatments and Technologies

Similar Articles

Navigate

  • Current Issue
  • Standards of Care Guidelines
  • Online Ahead of Print
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Care Print ISSN: 0149-5992, Online ISSN: 1935-5548.