Skip to main content
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes Care

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes Care
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Articles

Phenotype of Infants of Mothers with Gestational Diabetes

  1. Patrick M. Catalano, MD,
  2. Alicia Thomas, RD,
  3. Larraine Huston-Presley, MS and
  4. Saeid B. Amini, PHD, MBA, JD
  1. From the Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, Cleveland, Ohio
  1. Address correspondence and reprint requests to Patrick M. Catalano, MD, Department of Reproductive Biology, Case Western Reserve University, MetroHealth Medical Center, 2500 MetroHealth Dr., Cleveland, OH 44109. E-mail: pcatalano{at}metrohealth.org
Diabetes Care 2007 Jul; 30(Supplement 2): S156-S160. https://doi.org/10.2337/dc07-s209
PreviousNext
  • Article
  • Figures & Tables
  • Info & Metrics
  • PDF
Loading
  • AGA, average-for-gestational-age
  • GDM, gestational diabetes mellitus
  • LGA, large-for-gestational-age
  • NGT, normal glucose tolerance
  • SGA, small-for-gestational-age

The phenotype of the infant of the diabetic mother is generally perceived as being macrosomic or large for gestational age. However, not all infants of women with gestational diabetes mellitus (GDM) are macrosomic and, under certain circumstances, because of the interaction of genes and environment, can present as small for gestational age at birth. In contrast, the macrosomic infant presenting with hypoglycemia may not necessarily be the infant of a woman with GDM, but have an underlying metabolic or genetic dysregulation accounting for a similar phenotype. In this review, we will attempt to review the increasing prevalence of obesity in adults, adolescents, and possibly neonates as well. In an effort to better define macrosomia in the infant of the GDM mother, we will review the body composition analyses of infants of GDM mothers. Last, in addition to well-known factors such as maternal glucose control and overall nutrient availability, we will discuss the independent effect of maternal pregravid obesity on fetal adiposity in the infant of the GDM mother. We will be able to develop rational treatment modalities only if we have a better understanding of the various maternal components and factors relating to growth in these infants.

PHENOTYPE—

The word “phenotype” has its origins in the Greek language: phainein, to show or appear, and typos, a type or mark. In reviewing the definition of phenotype, it became apparent that the meaning of the word has changed over the past few decades. In the 1960s, the standard definition in a medical dictionary was “the outward visible expression of the hereditary constitution of an organism” (1). This definition appeared well suited to descriptions of the fetus of a diabetic mother at that time. For example, in Pedersen's text, the external appearance of the infant of the mother with diabetes is described as, “Most conspicuous is obesity, the round cherub's cheeks, buried eyes, and short neck. Many infants have a plethoric appearance, reddened skin, and an abundance of head hair” (2).

However, more recent definitions of phenotype recognize the scientific advances beyond that of simple description of outward appearances. Currently, phenotype is defined as “the complete observable characteristics of an organism or group, including anatomic, physiological, biochemical, and behavioral traits, as determined by the interaction of both genetic makeup and environmental factors” (3). The interaction between genes and environment can result in a variety of phenotypic expressions of infants of mothers with GDM.

In 1998, Hattersley et al. (4) reported on the various phenotypic permutations associated with the single gene mutations in the glucokinase gene (Fig. 1). Glucokinase phosphorylates glucose to glucose-6-phosphate in the pancreas and liver. A heterozygous glucokinase mutation results in hyperglycemia, usually with a mildly elevated fasting glucose and abnormal oral glucose tolerance test. This is due to both a defect in the sensing of glucose by the β-cell, resulting in decreased insulin release, and to a lesser degree from reduced hepatic glycogen synthesis. If the heterozygous mutation is present in the fetus, then the altered glucose sensing by the fetal pancreas will result in a decrease in insulin secretion. Because in the fetus insulin is a primary stimulus for growth, any defect in fetal insulin secretion will result in decreased fetal growth and possible growth restriction. Hence, depending on if mother, fetus, or both have this gene defect in the glucokinase gene, the phenotype of the infant can vary from intrauterine growth restriction, through normal fetal growth and on to macrosomia.

In contrast, genetic imprinting may result in the offspring having the phenotype of an infant of a GDM mother, but the mother has normal glucose tolerance. Genetic imprinting is defined as the expression of either a maternal or paternal gene, the parent of origin of which determines the expression of a single allele of a gene. An example of genetic imprinting that results in the offspring having the phenotype of a GDM mother is the Beckwith-Wiedemann syndrome (5). At birth, these infants present with macrosomia, defined as an average birth weight of 4 kg with increased subcutaneous tissue and muscle mass. Other findings include neonatal polycythemia and hypoglycemia. The hypoglycemia may be related to increased IGF-II expression, resulting in neonatal hyperinsulinemia. The most common situation is when the maternal copy of the gene (11p15.5) is inactivated. The only active copy of the gene is then the paternal copy. Hence, at birth, the infant with Beckwith-Wiedemann syndrome may have the phenotype of an infant of a GDM mother based on macrosomia, hypoglycemia, and polycythemia, whereas the mother may have completely normal glucose tolerance. The interaction of genes and the environment then has the potential to produce a myriad of phenotypes in the infant of the GDM mother, though fetal macrosomia still represents the most common phenotype.

HOW TO DEFINE MACROSOMIA—

In contrast to the definition of phenotype, the definition of macrosomia, i.e., excessive body size, has not changed much in the past decades. In reference to fetal growth, macrosomia is commonly defined as either birth weight greater than the 90th centile for gestational age or >4,000 g, independent of gestational age or sex. However, both of these definitions fail to take into account other factors that may be significant variables relating to fetal growth, such as sex, socioeconomic status, ethnicity, parity, and geographic variables such as altitude.

We are all aware of the recent trends for increases in the prevalence of adult overweight and obesity (6). However, there have also been significant increases in overweight in children, defined as ≥95th centile of BMI for age over the last decade, particularly in minority groups. In children as young as 2–5 years old, the prevalence of obesity has increased from 5 to 10.4% over the last 15–20 years (7). Do these trends in increasing weight of the population apply to birth weight as well? Based on recent reports from Scandinavia (8,9) and North America (10), the answer is yes. In Denmark from 1990 through 1999, the percent of babies weighing >4,000 g at birth has increased from 16.7 to 20% (8). In Sweden, there has been a 23% increase in birth weight of large-for-gestational-age (LGA) babies, defined as >2 SDs birth weight for gestational age, over the same time period (9). In North America, although average birth weights have increased only modestly, the percent of term small-for-gestational-age (SGA) babies (both white and black) has decreased in the U.S. by 11–12%, whereas in Canada, there has been a 27% decrease in SGA babies over the period from 1985 to 1998. In contrast, the percent LGA babies has increased during the same time period in the U.S. by 5% (white) and 9% (black) and by 24% in Canada (10). Hence, not only are the adult and adolescent populations experiencing an increase in the prevalence of obesity, but the same may be occurring at the time of birth.

BODY COMPOSITION ANALYSIS OF INFANTS OF WOMEN WITH NORMAL GLUCOSE TOLERANCE AND GDM—

In our studies of fetal growth/macrosomia, we have elected to concentrate on measures of body composition, i.e., fat and fat-free or lean body mass. The rationale for this approach stems from work done in the previous century. As far back as 1923, research by Moulton (11) described that the variability in weight within mammalian species was explained by the amount of adipose tissue, whereas the amount of lean body mass was relatively constant and changed in a consistent manner over time. In the fetus, Sparks (12), using autopsy data and chemical analysis in 169 fetuses, described a relatively comparable rate of accretion of lean body mass in SGA, average-for-gestational-age (AGA), and LGA fetuses, but considerable variation in the accretion of fetal fat. Fat accretion in the SGA fetus was considerably less than in the AGA fetus, which in turn was less than that of the LGA fetus. Last, the term human fetus at birth has the greatest percent body fat (∼12%) compared with other mammals (13). For these reasons, we have elected to assess fetal growth in our studies using estimates of body composition. The methodologies we have used include anthropometric, stable isotope, and total-body electrical conductivity. Space considerations do not allow us to go into methodological detail, but references are provided (14–16).

We have recently published a series of studies comparing the body composition analysis of infants of women with normal glucose tolerance (NGT) and GDM (Table 1) within 48 h of birth (17,18). These studies used both total-body electrical conductivity and anthropometric methodologies. Although there was no significant difference in birth weight or fat-free mass between the groups, there was a significant increase in fat mass and percent body fat in the infants of the GDM mothers. The body composition analyses were confirmed by the anthropometric/skinfold measures. These data were adjusted for potential confounding variables such as parity and gestational age without any significant change in results.

We further analyzed these data by examining a subset of AGA neonates (17). In Table 2, there are no significant differences in birth weights between the AGA infants of the GDM and NGT groups. However, there was again a significant increase in fat mass, percent body fat, and skinfold measures in the infants of the GDM mothers compared with the NGT. Interestingly, the fat-free mass in the infants of the GDM mothers was significantly less compared with the infants in the NGT group. Similar results were obtained when we performed another independent analysis of only LGA neonates (18) (Table 3). Based on these results, we conclude that birth weight alone may not be a sensitive enough measure to recognize subtle differences in fetal growth in the infants of the GDM mother.

METABOLIC FACTORS RELATED TO MACROSOMIA IN INFANTS OF GDM MOTHERS—

Fetal macrosomia, however defined, has been used as a primary outcome measure in the management of women with GDM. The primary modes of treatment of women with GDM have been aimed at optimizing glucose control. Although there are proponents for the importance of individual measures of fasting (19) compared with postprandial glucose control (20), primary emphasis has been placed on overall mean glucose control (21). The control of circulating glucose has used measures such as diet, exercise, and pharmacological therapy, including insulin and/or oral hypoglycemic agents. Additionally, ultrasound has been used as a tool to direct therapy of women with GDM. Using increased abdominal circumference in late second/early third trimester as a specific measure of macrosomia, one may be able to avoid pharmacological therapy in those women who have evidence of appropriate fetal growth (e.g., abdominal circumference less than the 75th centile for gestational age) and institute insulin therapy for those women with GDM whose fetuses have ultrasound evidence of increased abdominal circumference, regardless of maternal glucose concentration (22). The use of amniocentesis to measure amniotic fluid insulin in the third trimester has also been used to guide therapy (23). In addition to glucose control in the management of GDM, Freinkel (24) raised the issue in his Banting Lecture of the importance of nutrients other than glucose that are related to fetal macrosomia, i.e., fuel-mediated teratogenesis. As an example, Knoop et al. (25) demonstrated the importance of circulating maternal lipid concentrations in relationship to fetal growth.

MATERNAL OBESITY AND FETAL MACROSOMIA IN INFANTS OF GDM MOTHERS—

As noted previously, there has been a significant increase in the prevalence of obesity in women of reproductive age. Because many women diagnosed with GDM in the U.S. and in Europe are overweight or obese, recent studies have evaluated the impact of maternal obesity on fetal growth in women with GDM. In 2003, Schaeffer-Graf et al. (26) reported on independent predictors of fetal macrosomia both in utero (ultrasound abdominal circumference >90%) and at delivery (birth weight >90% based on the local German population standard). The independent predictors that were examined included maternal age, parity, history of previous LGA neonate or GDM, prepregnancy BMI, weight gain during the index pregnancy, smoking, hypertension, glucose values from the diagnostic oral glucose tolerance test, A1C, daily glucose profiles, and use of insulin. Using successive multivariate logistic regression, the results were as follows: 1) at entry, only history of an LGA baby in a previous pregnancy and maternal BMI ≥30 kg/m2 were predictive of an abdominal circumference >90%; 2) at 24 weeks’ gestational age, only a history of a previous LGA baby was predictive of an abdominal circumference >90%; and 3) at 28 weeks, only maternal BMI ≥30 kg/m2 and history of an LGA baby were predictive of an abdominal circumference >90%. Interestingly, only at 32 and 36 weeks was the fasting glucose a better predictor than a history of a prior LGA neonate and maternal obesity. Finally, at birth, only a maternal pregravid BMI ≥30 kg/m2 and history of an LGA baby were predictive of having an LGA baby.

In the U.S., Langer et al. (27) reported similar findings. In obese women with GDM whose glucose was well controlled on diet alone, the odds ratio (OR) for fetal macrosomia, defined as birth weight >4,000 g, was significantly increased (OR 2.12) compared with well-controlled (diet only) GDM subjects whose BMI was between 18.5 and 24.9 kg/m2. Similar results, relating to the risk of fetal macrosomia in obese GDM, were reported in GDM subjects who were poorly controlled on diet or insulin. Only in those GDM subjects whose glucose was well controlled with insulin, was there no significant increased risk of macrosomia regardless of the women's pregravid BMI. We speculate that there may be independent effects of insulin in addition to glucose control affecting fetal growth, for example, insulin's effect on maternal lipid metabolism. Additionally, the criteria for optimal glucose management vary considerably among practitioners, as does the utilization of insulin and oral agents in the treatment of GDM. This may explain to a certain extent variation in outcome in the literature.

In an effort to better understand the potential independent effect of maternal obesity on growth of NGT and GDM mothers, we performed a stepwise logistic regression analysis on the 220 infants of NGT mothers and 195 term infants of GDM mothers previously described in Table 1. The results are given in Table 4 (28). Not surprisingly, gestational age at term was the independent variable with the strongest correlation with both birth weight and lean body mass. Maternal smoking had a negative correlation with both birth weight and lean body mass, and paternal weight had a weak correlation with only lean body mass. In contrast, maternal pregravid BMI had the strongest correlation with fat mass and percent body fat, explaining ∼7% of the variance in both fat mass and percent body fat. Although ∼50% of the subjects had GDM, only 2% of the variance in fat mass in this population was explained by a mother having GDM.

In summary, the infant of a GDM mother may have a variable phenotype based on the interaction of genes and the in utero environment. Additionally, the macrosomic fetus who presents much like the infant of a GDM mother may have the possibility, albeit small, of other genetic or metabolic dysfunctions mimicking GDM. Birth weight alone may not be a sensitive enough measure of fetal growth to assess the effects of GDM on the developing offspring. Consideration should be given to estimation of fetal adiposity, including such simple measures as Ponderal Index (weight/length3). Last, given the increased prevalence of overweight and obesity in the population, and the independent effect of maternal pregravid obesity on fetal growth/adiposity, maternal obesity in and of itself needs to be addressed if the short- and long-term effects of fetal macrosomia in women with GDM are to be prevented.

Figure l—
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure l—

The glucokinase (GK) mutations: variation in fetal growth. If the heterozygous GK mutation is in the mother and not the fetus (A), then the fetus is at risk for being macrosomic based on excess maternal nutrient availability (B). If only the fetus has the GK mutation, then the fetus is at risk for being intrauterine growth restricted (IUGR) because of the altered glucose sensing by the fetal pancreas, with resultant decreased fetal insulin secretion. C: If the mother and the fetus either both have or do not have the GK mutation, then there is decreased risk of the fetus being macrosomic or IUGR. Adapted from Hattersley et al. (4).

View this table:
  • View inline
  • View popup
Table 1—

Neonatal body composition and anthropometrics in infants of women with GDM and NGT

View this table:
  • View inline
  • View popup
Table 2—

Neonatal body composition and anthropometrics in AGA infants of women with GDM and NGT

View this table:
  • View inline
  • View popup
Table 3—

Neonatal body composition in LGA infants of women with GDM and NGT

View this table:
  • View inline
  • View popup
Table 4—

Stepwise aggression analysis of factors relating to fetal growth and body composition in infants of women with GDM (n = 195) and NGT (n = 220)

Acknowledgments

This work was supported by National Institutes of Health Grant HD-22965 and General Clinical Research Center Grant M-1-RR-80.

Footnotes

  • This article is based on a presentation at a symposium. The symposium and the publication of this article were made possible by an unrestricted educational grant from LifeScan, Inc., a Johnson & Johnson company.

    A table elsewhere in this issue shows conventional and Système International (SI) units and conversion factors for many substances.

    • Accepted May 5, 2006.
    • Received March 28, 2006.
  • DIABETES CARE

References

  1. ↵
    Dorland's Illustrated Medical Dictionary. 24th ed. Philadelphia, Saunders, 1965
  2. ↵
    Pedersen J: The foetus and newborn infant. In The Pregnant Diabetic and Her Newborn: Problems and Management. Baltimore, MD, Williams & Wilkens, 1962, Chapter VII, p. 60
  3. ↵
    Mosby's Medical Dictionary. 5th ed. Anderson KN, Ed. St. Louis, MO, Mosby, 1998
  4. ↵
    Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S: Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 19: 268–270, 1998
    OpenUrlCrossRefPubMedWeb of Science
  5. ↵
    Jones KL, Smith DW: Beckwith-Wiedemann syndrome. In Smith's Recognizable Patterns of Human Malformations. 5th ed. Philadelphia, Saunders, 1997, p. 164–166
  6. ↵
    Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, Marks JS: Prevalence of obesity, diabetes and obesity-related health risk factors. JAMA 289:76–79, 2003
    OpenUrlCrossRefPubMedWeb of Science
  7. ↵
    Ogden CL, Flegal KM, Carroll MD, Johnson CL: Prevalence and trends in overweight among U.S. children and adolescents. JAMA 288:1728–1732, 2002
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    Orskou J, Kesmodel U, Henrikson TB, Secker NJ: An increasing proportion of infants weigh more than 4000 grams at birth. Acta Obstet Gynecol Scand 80:931–936, 2001
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    Surkan PJ, Hsieh C-C, Johansson ALU, Dickman PW, Cnattingius S: Reasons for increasing trends in large for gestational age births. Obstet Gynecol 104:720–726, 2004
    OpenUrlPubMedWeb of Science
  10. ↵
    Ananth CV, Wen SW: Trends in fetal growth among singleton gestations in the United States and Canada, 1985 through 1998. Semin Perinatol 26:260–267, 2002
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    Moulton CR: Age and chemical development in mammals. J Biol Chem 57:79–97, 1923
    OpenUrlFREE Full Text
  12. ↵
    Sparks JW: Human intrauterine growth and nutrient accretion. Semin Perinatol 8:74–93, 1984
    OpenUrlPubMedWeb of Science
  13. ↵
    Girard J, Ferre P: Metabolic and hormonal changes around birth. In Biochemical Development of the Fetus and Neonate. Jones CT, Ed. New York, Elsevier Biomedical Press, 1982, p. 517
  14. ↵
    Fiorotto MC, Klish WJ: Total body electrical conductivity measurements in the neonate. Clin Perinatol 18:611–627, 1991
    OpenUrlPubMedWeb of Science
  15. Catalano PM, Thomas AJ, Avallone DA, Amini SB: Anthropometric estimation of neonatal body composition. Am J Obstet Gynecol 173:1176–1181, 1995
    OpenUrlCrossRefPubMedWeb of Science
  16. ↵
    Fiorotto MC, Cochran WJ, Runk RC, Sheng J-P, Klish WJ: Total body electrical conductivity measurements: effects of body composition and geometry. Am J Physiol 252:R798–R800, 1987
    OpenUrl
  17. ↵
    Catalano PM, Thomas A, Huston-Presley L, Amini SB: Increased fetal adiposity: a very sensitive marker of abnormal in utero development. Am J Obstet Gynecol 189:1698–1704, 2003
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    Durnwald C, Huston-Presley L, Amini S, Catalano P: Evaluation of body composition of large-for-gestational-age infants of women with gestational diabetes mellitus compared with women with normal glucose tolerance levels. Am J Obstet Gynecol 191:804–808, 2004
    OpenUrlCrossRefPubMedWeb of Science
  19. ↵
    Uvena-Celebrezze J, Fung C, Thomas AJ, Hoty A, Huston-Presley L, Amini SB, Catalano PM: Relationship of neonatal body composition to maternal glucose control in women with gestational diabetes mellitus. J Matern Fetal Neonatal Med 12:396–401, 2002
    OpenUrlCrossRefPubMed
  20. ↵
    Jovanovic-Peterson L, Peterson CM, Reed GF, Metzger BE, Mills JL, Knopp RH, Aarons JH: Maternal post prandial glucose levels and infant birth weight: The Diabetes in Early Pregnancy Study. Am J Obstet Gynecol 164:103–111, 1991
    OpenUrlPubMedWeb of Science
  21. ↵
    Langer O, Rodriguez DA, Xenaris EM, McFarlane MB, Berkus MD, Arrendondo F: Intensified versus conventional management of gestational diabetes. Am J Obstet Gynecol 170:1036–1047, 1994
    OpenUrlCrossRefPubMedWeb of Science
  22. ↵
    Buchanan TA, Kjos SL, Manaoro MN, Wu P, Madrilejo NG, Gonzalez M, Nunez V, Pantoja PM, Xiang A: Use of fetal ultrasound to select metabolic therapy for pregnancies complicated by mild gestational diabetes. Diabetes Care 17:275–283, 1994
    OpenUrlAbstract/FREE Full Text
  23. ↵
    Weiss P, Hofmann H: Diagnosis and treatment of gestational diabetes according to amniotic fluid insulin levels. Arch Gynecol 239:81–91, 1986
    OpenUrlCrossRefPubMed
  24. ↵
    Freinkel N: The Banting Lecture 1980: Of pregnancy and progeny. Diabetes 29:1023, 1980
    OpenUrlAbstract/FREE Full Text
  25. ↵
    Knoop RH, Bergelin RO, Wahl PW, Walden CE: Relationships of infant birth size to maternal lipoproteins, apoproteins, fuels, hormones, clinical chemistries, and body weight at 36 weeks gestation. Diabetes 34 (Suppl. 2):71–77, 1985
    OpenUrl
  26. ↵
    Schaeffer-Graf UM, Kjos SL, Kilaouz O, Plagemann A, Brauer M, Dudenhausen JW, Vetter K: Determinants of fetal growth at different periods of pregnancies complicated by gestational diabetes mellitus or impaired glucose tolerance. Diabetes Care 26:193–198, 2003
    OpenUrlAbstract/FREE Full Text
  27. ↵
    Langer O, Yogev Y, Xenakis EMJ, Brustman L: Overweight and obese in gestational diabetes: the impact on pregnancy outcome. Am J Obstet Gynecol 192:1368–1376, 2005
    OpenUrlCrossRefPubMed
  28. ↵
    Catalano PM, Ehrenberg HM: The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG 113:1126–33, 2006
    OpenUrlCrossRefPubMedWeb of Science
View Abstract
PreviousNext
Back to top

In this Issue

July 2007, 30(Supplement 2)
  • Table of Contents
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Phenotype of Infants of Mothers with Gestational Diabetes
(Your Name) has forwarded a page to you from Diabetes Care
(Your Name) thought you would like to see this page from the Diabetes Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Phenotype of Infants of Mothers with Gestational Diabetes
Patrick M. Catalano, Alicia Thomas, Larraine Huston-Presley, Saeid B. Amini
Diabetes Care Jul 2007, 30 (Supplement 2) S156-S160; DOI: 10.2337/dc07-s209

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Phenotype of Infants of Mothers with Gestational Diabetes
Patrick M. Catalano, Alicia Thomas, Larraine Huston-Presley, Saeid B. Amini
Diabetes Care Jul 2007, 30 (Supplement 2) S156-S160; DOI: 10.2337/dc07-s209
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • PHENOTYPE—
    • HOW TO DEFINE MACROSOMIA—
    • BODY COMPOSITION ANALYSIS OF INFANTS OF WOMEN WITH NORMAL GLUCOSE TOLERANCE AND GDM—
    • METABOLIC FACTORS RELATED TO MACROSOMIA IN INFANTS OF GDM MOTHERS—
    • MATERNAL OBESITY AND FETAL MACROSOMIA IN INFANTS OF GDM MOTHERS—
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Tables
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Obstetric Management in Gestational Diabetes
  • Prevention of Type 2 Diabetes in Women With Previous Gestational Diabetes
  • Cellular Mechanisms for Insulin Resistance in Normal Pregnancy and Gestational Diabetes
Show more Original Articles

Similar Articles

Navigate

  • Current Issue
  • Standards of Care Guidelines
  • Online Ahead of Print
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Care Print ISSN: 0149-5992, Online ISSN: 1935-5548.