Skip to main content
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes Care

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes Care
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Original Research

Dietary Patterns and Incident Type 2 Diabetes in Chinese Men and Women

The Singapore Chinese Health Study

  1. Andrew O. Odegaard, PHD1⇓,
  2. Woon-Puay Koh, PHD2,
  3. Lesley M. Butler, PHD3,
  4. Sue Duval, PHD1,
  5. Myron D. Gross, PHD1,
  6. Mimi C. Yu, PHD4,
  7. Jian-Min Yuan, MD, PHD1,4 and
  8. Mark A. Pereira, PHD1
  1. 1Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota
  2. 2Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
  3. 3Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
  4. 4The Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
  1. ↵Corresponding author: Andrew O. Odegaard, odeg0025{at}umn.edu.
Diabetes Care 2011 Apr; 34(4): 880-885. https://doi.org/10.2337/dc10-2350
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

OBJECTIVE To empirically derive dietary patterns and examine their association with incident type 2 diabetes.

RESEARCH DESIGN AND METHODS We used data from the Singapore Chinese Health Study, including 43,176 Chinese men and women (aged 45–74 years), free of diabetes, cardiovascular disease, and cancer at baseline (1993–1998) and followed up through 2004. Two major dietary patterns were identified using principal components analysis: a vegetable, fruit, and soy-rich pattern (VFS) and a dim sum and meat-rich pattern (DSM). Pattern scores for each participant were calculated and examined with type 2 diabetes risk using Cox regression.

RESULTS The associations of the two dietary patterns with diabetes risk were modified by smoking status. Neither pattern was associated with risk of diabetes in ever smokers. In never smokers, the VFS dietary pattern was inversely associated with risk of type 2 diabetes. Compared with the lowest quintile of the VFS dietary pattern score, the hazard ratios (HRs) for quintiles 2–5 were 0.91, 0.82, 0.73, and 0.75 (P = 0.0005 for trend). The DSM dietary pattern was positively associated with risk of type 2 diabetes in never smokers, with HRs for quintiles 2–5 of 1.07, 1.25, 1.18, and 1.47 (P < 0.0001 for trend).

CONCLUSIONS A dietary pattern with higher intake of vegetables, fruits, and soy foods was inversely associated with risk of incident type 2 diabetes, and a pattern with higher intake of dim sum, meat and processed meat, sweetened foods and beverages, and fried foods was associated with a significantly increased risk of type 2 diabetes in Chinese men and women in Singapore.

The prevalence of type 2 diabetes has increased threefold to fivefold in Southeast Asia during the past 3 decades across age and demographic groups (1). The prevalence of Chinese in Singapore nearly doubled from 1984 (4.7%) to 1998 (8.0%) (2). These increases in Southeast Asia are greater than those observed in the U.S. and other parts of the world (1,3). Substantive shifts in socioeconomic, demographic, and lifestyle patterns are thought to be responsible for this trend (1).

Dietary intake is central to these population trends and thus prevention and etiology of type 2 diabetes through its role in energy balance, insulin resistance, and glycemic control. Most research on diet and type 2 diabetes has focused on individual foods and nutrients. These data have proven valuable but are best interpreted in the scheme of an overall dietary pattern, which may be most germane to health (4).

Epidemiologic studies have examined associations between dietary patterns and the risk of type 2 diabetes (5–10). Generally, these studies suggest that higher intakes of vegetables and fruits, whole grains, fish, and low-fat dairy may be protective for diabetes risk, and higher intakes of processed grains, added sugars, processed and red meats, and fried foods may increase diabetes risk. In light of the similar dietary intakes and primarily Western dietary composition of the populations studied to date, more thorough research considering dietary patterns in a Chinese population may add further cultural and scientific insight into the diet and diabetes association.

The Singapore Chinese Health Study (SCHS) is a prospective cohort investigation of more than 63,000 Chinese men and women in Singapore. The aim of this study was to derive dietary patterns from this population and examine their association with risk of incident type 2 diabetes.

RESEARCH DESIGN AND METHODS

Study population

The design of the SCHS has been previously described (11). Briefly, the cohort was drawn from men and women, aged 45–74 years, who belonged to one of the major dialect groups (Hokkien or Cantonese) of Chinese in Singapore. Between April 1993 and December 1998, 63,257 individuals completed an in-person interview that included questions on usual diet, demographics, height and weight, use of tobacco, usual physical activity, menstrual and reproductive history (women only), medical history, and family history of cancer. A follow-up telephone interview took place between 1999 and 2004 for 52,325 cohort members (83% of recruited cohort). The institutional review boards at the National University of Singapore and the University of Minnesota approved this study.

Assessment of diet and covariates

A semiquantitative food frequency questionnaire that was specifically developed for this population assessing 165 commonly consumed foods was administered during the baseline interview to document the usual dietary intake of the previous year. During the interview, the respondent referred to accompanying photographs to select from eight food frequency categories (ranging from ‘‘never or hardly ever’’ to ‘‘two or more times a day’’) and three portion sizes. The food frequency questionnaire has been validated against a series of 24-h dietary recall interviews in a random sample of 1,220 participants (11) as well as in selected biomarker studies (12,13).

In conjunction with this cohort, the Singapore Food Composition Table was developed, a food-nutrient database that lists the levels of 96 nutritive/nonnutritive components per 100 g of cooked food and beverages in the diet of the Singaporean Chinese. By combining information obtained from the food frequency questionnaire with nutrient values provided in this food-nutrient database accounting for raw and cooked foods, we were able to compute the mean daily intakes of nutrients for each subject (11).

Other known or suspected risk factors for diabetes assessed with the baseline questionnaire included age (years), smoking habits/status (age started/quit, amount, frequency, type), highest educational level reached, BMI (kg/m2) calculated using self-reported height and weight, and amount (hours) of moderate (e.g., brisk walking) and strenuous (e.g., jogging) physical activity each week.

Assessment of diabetes

Self-reported diabetes as diagnosed by a physician was evaluated at baseline, and participants with a history of diagnosed diabetes were excluded from analysis. Diabetes status was assessed again by the following question asked during the follow-up telephone interview: “Have you been told by a doctor that you have diabetes (high blood sugar)?” If yes: “Please also tell me the age at which you were first diagnosed?” Participants were classified as having incident diabetes if they reported developing diabetes any time between the initial enrollment interview and the follow-up telephone interview that occurred between July 1999 and October 2004.

A validation study of the incident diabetes cases used two methods and was reported in detail in Odegaard et al. (14,15). On the basis of a hospital-based discharge summary database and a supplementary questionnaire regarding symptoms, diagnostic tests, and hypoglycemic therapy during a telephone interview, we observed a positive predictive value of 99% (14). Alternatively, 2,625 randomly selected participants who answered “no” to the question of diabetes diagnosis at baseline and follow-up, and provided blood samples at their follow-up interview, were analyzed for HbA1c (glycated hemoglobin). Of these, 148 (5.6% of the sample) had an HbA1c ≥6.5, meeting the most recent diagnostic guidelines for the presence of diabetes (16). Thus, 94.4% of persons who reported being free of diabetes at baseline and follow-up were below the HbA1c threshold for diabetes (15).

Statistical analysis

Participants were excluded from the analysis if they died before the follow-up interview (n = 7,722), reported baseline diabetes (n = 5,469), cancer, heart disease, or stroke (n = 5,975), reported extreme sex-specific energy intakes (<600 or >3,000 kcal women; <700 or >3,700 kcal men), or migrated out of Singapore (n = 17). Also excluded were 20 participants whose diabetes status was not clear after the validation effort, which left 43,176 participants in the present analysis.

Dietary patterns were derived by principal component analysis (PCA) using SAS 9.1 software (SAS Institute Inc., Cary, NC). PCA in nutritional analyses aims to account for the maximal variance of dietary intake by combining the many different dietary variables into a smaller number of factors based on the intercorrelation of these variables. All 165 foods and beverages, including alcohol, were first standardized to the same frequency/month unit before the PCA method was applied and factors were extracted. The factors were rotated orthogonally to maintain an uncorrelated state and improve interpretability, and a two-factor solution was retained based on eigenvalues, scree plot, and factor interpretability. For comparability and interpretability of our results, we present factor loadings ≥0.20 even though values <0.20 are statistically significant due to the large sample size of the study. These parameters align with previous studies (5–9).

Factor scores for each participant were calculated by multiplying the intake of the standardized food item by their respective factor loadings on each pattern. The scores are linear variables and represent the weighted sum of all 165 food and beverage items. Participants were divided into quintiles by score to indicate the level at which their dietary intake corresponded with each pattern (i.e., a higher score corresponds with greater conformity to the derived pattern). Factors were initially extracted by sex, dialect, and smoking status and were highly similar in loading structure and disease prediction to the reported whole cohort factors, so the factors derived from the overall cohort were used.

Baseline and dietary characteristics were calculated for participants across quintiles of each dietary pattern score. Tests for trend across dietary pattern scores were performed by assigning the median value of the quintile to the respective categories and entering this as a continuous variable into the models. Person-years for each participant were calculated from the year of recruitment to the year of reported type 2 diabetes diagnosis, or year of follow-up telephone interview for those who did not report a diabetes diagnoses. Hazard ratios (HRs) per quintile of dietary pattern score were estimated by Cox proportional hazards regression models using the SAS statistical software. There was no evidence that proportional hazard assumptions were violated, as indicated by the lack of significant interaction between the dietary pattern scores and a function of survival time in the models.

Two models were constructed to examine the association between dietary pattern score and risk of type 2 diabetes. Covariates included in model I were baseline age (<50, 50–54, 55–59, 60–64, ≥65), year of interview (1993–1995 and 1996–1998), dialect (Hokkiens vs. Cantonese), sex, education (none, primary, secondary or higher), smoking (never, ever), any moderate or strenuous physical activity (yes vs. no), history of physician-diagnosed hypertension (yes vs. no), and total energy intake (kcal/day). Model II included these variables plus baseline BMI (kg/m2 as the original BMI and its quadratic term [BMI2]) because this may represent a mediator in this diet–diabetes relationship. Analyses testing for interactions of sex, age, smoking, physical activity, and BMI with the dietary pattern scores, as well as stratification, were completed. Lastly, sensitivity analyses excluding individuals with less than 2 years of follow-up were also done to account for confounding due to antecedent disease.

RESULTS

Of 43,176 men and women with 246,898 person-years of follow-up, 2,252 developed type 2 diabetes (5.2%). Individuals with incident diabetes were older, had a higher BMI, reported less physical activity and less education, and smoked more.

Two main dietary patterns were derived from PCA. The first pattern was named vegetable, fruit, and soy-rich (VFS), and factor loadings for this pattern ≥0.20 are summarized in Supplementary Table 1. The higher the loading (correlation) between a food and a factor the more that food uniquely contributes to the pattern score. Thus, foods loading highly on this pattern are predominantly vegetables, fruits, and soy-based items. The second pattern was named dim sum and meat-rich (DSM). Foods loading ≥0.20 on the DSM pattern are presented in Supplementary Table 2. A variety of foods, predominantly dim sum, fresh and processed meats and seafood, noodle and rice dishes, sweetened foods, and deep fried foods are prominent contributors to the pattern. Most dim sum foods are savory pastries, such as steamed or deep fried dumplings, filled buns, noodles, sweet pastries, and meat dishes.

Baseline characteristics and HRs are presented separately for ever smokers and never smokers because there was evidence that smoking modified the association between the dietary patterns and the incidence of type 2 diabetes. Overall, 31,326 participants reported no history of smoking and 1,570 developed type 2 diabetes (5.0%), and 11,850 reported a history of smoking and 682 developed type 2 diabetes (5.8%). Table 1 reports baseline characteristics of the study sample according to smoking status by quintile of the VFS dietary pattern score. Table 2 summarizes baseline characteristics by smoking status according to quintile of the DSM dietary pattern score.

View this table:
  • View inline
  • View popup
Table 1

Participant characteristics by smoking status across quintiles of vegetable, fruit, and soy-rich dietary pattern score: Singapore Chinese Health Study

View this table:
  • View inline
  • View popup
Table 2

Participant characteristics by smoking status across quintiles of dim sum and meat-rich dietary pattern score: Singapore Chinese Health Study

HRs for incident type 2 diabetes by smoking status are presented in Table 3. Overall, there was no association between the DSM or the VFS dietary pattern score and type 2 diabetes in ever smokers. We evaluated potential effect modification through stratification by sex, BMI, age, physical activity, and smoking habits (current vs. former smokers, smoking intensity and duration), but the results did not differ.

View this table:
  • View inline
  • View popup
Table 3

HRs of type 2 diabetes according to quintile of dietary pattern score by smoking status: Singapore Chinese Health Study

Conversely, a statistically significant inverse association was observed for type 2 diabetes risk among never smokers with increasing conformity to the VFS pattern. Compared with the lowest quintile, there was a monotonic decrease in risk as the score increased in quintiles 2–4, and leveled off in the highest quintile (Table 3). The association persisted after adjustment for all potential confounders, including BMI. Tests for interaction between VFS pattern score in never smokers and BMI, physical activity, and age, as well as stratification efforts, provided no evidence of any effect modification with this pattern. Excluding individuals with less than 2 years of follow-up did not materially change the association.

For the DSM pattern in never smokers, the HR increased in the second through fifth quintiles of the DSM dietary pattern score compared with the first quintile of the DSM pattern score. A 47% increase in risk was observed in the fully adjusted model in the fifth quintile of the DSM score (HR 1.47; 95% CI 1.22–1.77, P < 0.0001 for trend) compared with the first quintile. This was nominally attenuated upon adjustment for BMI (Table 3). There was no evidence the association differed by sex, BMI, physical activity, or age. Excluding individuals with diabetes with less than 2 years of follow-up did not materially alter the results in any analysis considering the DSM dietary pattern score nor did consideration of case status from the validation study.

CONCLUSIONS

In this large prospective study of Chinese Singaporeans, two main dietary patterns were identified. A pattern characterized by high consumption of vegetables, fruit, and soy products was termed “VFS.” The other dietary pattern was characterized by high consumption of dim sum, fresh and processed meats, higher levels of noodles and rice dishes, and some sweetened and deep fried foods and was termed “DSM.” The associations with each pattern were modified by smoking status. Although smokers are at higher risk of developing type 2 diabetes, neither pattern was associated with diabetes risk among ever smokers. In never smokers, the VFS dietary pattern was inversely associated with type 2 diabetes risk, and the DSM dietary pattern was positively associated with type 2 diabetes risk.

The VFS pattern in the SCHS has similarities in loading structure and association with type 2 diabetes to dietary patterns termed “prudent” in the Nurses’ Health Study (8), The Health Professionals Follow-up Study (9), and a Finnish study (7), all of which found suggestive or definitive inverse associations between this pattern and type 2 diabetes. These patterns were characterized by higher intake of vegetables, fruits, whole grains, legumes, fish, poultry, and low-fat dairy. There are also some similarities to cluster analysis-derived dietary patterns from the Shanghai Women’s study, where a cluster with greater fruit and vegetables, dairy, meat, and seafood and less soy and rice was associated with a decreased risk compared with a cluster with greater rice, less meat and seafood, fruit, vegetable, dairy, and snack and dessert intake (10). This protective dietary cluster was also associated with significantly less obesity and hypertension as well as with younger age, higher education, and higher incomes. In the current study, the VFS pattern differs from previous Western populations examined in that a relatively high level of soy products are consumed in this population and essentially all the grains are refined or processed. Furthermore, dairy and nonsoy legumes are not prominent usual dietary components in this Chinese population. Regardless of the differences, the VFS pattern was associated with nutritional components such as higher fiber intake and fatty acids that may be beneficial for diabetes risk (17,18).

The DSM was the other main pattern in the SCHS. Similar to the previous studies on this topic that presented a dietary pattern with higher consumption of meats, fried foods, and sweetened foods and beverages, subjects in the current study who ate a diet highly conforming to the DSM pattern experienced a significantly increased risk of type 2 diabetes. These previous studies also noted higher levels of refined grains on their “Western” and “conservative” patterns (7–9).

Unlike previous studies on this topic, the associations in the current study were observed only in never smokers. Smoking has been shown to be a significant, independent causal risk factor for type 2 diabetes (19). Indeed, ever smokers in the SCHS have a higher incident rate of type 2 diabetes. Multiple pathways of pathophysiologic significance appear to be involved in the association of smoking and type 2 diabetes that could confound the association between dietary intake and type 2 diabetes, including smoking contributing to insulin resistance (20), oxidative stress, β-cell dysfunction (21,22), accumulation of greater abdominal fat compared with nonsmokers (20), and weight gain in those who quit, cycle, or smoke heavily (20). Other potential contributors to the association include the clustering of nonhealthy behaviors such as low levels of physical activity and poor diets, especially in individuals whose socioeconomic status is lower (19). Smoking also has significant effects on oral and intravenous glucose tolerance tests, thus influencing detection of diabetes (23). These potential causal and noncausal mechanisms may help explain why no inverse association was found in the VFS pattern in ever smokers.

Limited evidence is available on the topic of the interplay between diet and smoking on risk of diabetes. A study examining oxidative stress and type 2 diabetes found that dietary factors did not explain the long-term effects of smoking on glucose homeostasis (24). In addition, a prospective study investigating serum carotenoid levels as a marker of a diet high in plant-based foods suggested that smoking annuls the potentially protective effect of high antioxidant consumption on diabetes risk, and antioxidant metabolism may be altered in smokers compared with nonsmokers (25).

On the other hand, hypothesizing a further increased risk in the DSM pattern in ever smokers would seem to be in line with current dietary and smoking evidence in relation to diabetes. Yet, our results provided no evidence to support this. Montonen et al. (7) conducted the only other study to investigate this interaction with overall dietary patterns and observed a greater increased risk in current smokers eating a poor diet compared with former or never smokers.

Strengths of the current study include the combination of prospective data and a non-Western population, which uniquely contributes to the literature. Another particular strength was the use of a food frequency questionnaire that was specifically developed and validated in this population. Others include the high participant response rate, detailed collection of data through face-to-face interviews, very low level of loss of participants to follow-up, and validated diabetic case status.

Limitations to consider in the interpretation of the study include the subjective nature of steps in PCA. However, we attempted to maintain objectivity in each of these steps and also used a standard method applied in previous studies. Inevitably, diet was measured with some error, although this would most likely result in nondifferential misclassification with respect to disease status and likely underestimation of risk. The self-report of other lifestyle related data may also result in some misclassification and residual confounding in our models.

Finally, these results may only apply to physician-diagnosed diabetes. Even with high levels of validity, there is potential for numerous individuals with undiagnosed type 2 diabetes due to the nature of the disease. If the dietary pattern led to increased or decreased physician diagnosis, the associations could be overestimated. Lastly, the dietary patterns identified by PCA represent usual intake of the study population as captured by a food frequency questionnaire but do not necessarily reflect the optimal or worst overall diet in relation to diabetes risk.

In conclusion, a dietary pattern characterized by higher intake of vegetables, fruits, and soy foods was inversely associated with risk of incident type 2 diabetes, and a pattern with higher intake of dim sum, meat and processed meat, sweetened foods and beverages, and fried foods was associated with a significantly increased risk of type 2 diabetes in a large cohort of Chinese men and women in Singapore. These associations were limited to never smokers, comprising 72.6% of the study population. Dietary patterns are unique to the populations they are derived from, yet consistencies across populations and cultures suggest that increased intake of plant-based foods, such as vegetables, fruits, soy and other legumes, whole grains, nuts, and seeds, likely decreases diabetes risk, while higher intake of processed meat, sweetened foods and beverages, fried foods, and refined grains increases risk of developing type 2 diabetes.

Acknowledgments

This study was supported by the National Institutes of Health (Grants NCI-R01-CA-055069, R35-CA-053890, R01-CA-080205, R01-CA-098497, and R01-CA-144034).

No potential conflicts of interest relevant to this article were reported.

A.O.O. conceptualized, designed, and carried out analysis, interpreted data, and wrote and edited the manuscript. W.-P.K. reviewed and edited the manuscript. L.M.B. contributed to discussion and reviewed and edited the manuscript. S.D. and M.D.G. reviewed and edited the manuscript. M.C.Y. contributed to the study design and reviewed and edited the manuscript. J.-M.Y. reviewed and edited the manuscript. M.A.P. contributed to the design and data interpretation and reviewed and edited the manuscript.

The authors thank Siew-Hong Low of the National University of Singapore for supervising the fieldwork of the Singapore Chinese Health Study, and Renwei Wang of the University of Minnesota for the development and maintenance of the cohort study database.

Footnotes

  • This article contains Supplementary Data online at http://care.diabetesjournals.org/lookup/suppl/doi:10.2337/dc10-2350/-/DC1.

  • Received December 14, 2010.
  • Accepted January 11, 2011.
  • © 2011 by the American Diabetes Association.

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

References

  1. ↵
    1. Yoon KH,
    2. Lee JH,
    3. Kim JW,
    4. et al
    . Epidemic obesity and type 2 diabetes in Asia. Lancet 2006;368:1681–1688pmid:17098087
    OpenUrlCrossRefPubMedWeb of Science
  2. ↵
    1. Lee WR
    . The changing demography of diabetes mellitus in Singapore. Diabetes Res Clin Pract 2000;50(Suppl. 2):S35–S39pmid:11024582
    OpenUrlCrossRefPubMedWeb of Science
  3. ↵
    1. Gregg EW,
    2. Cadwell BL,
    3. Cheng YJ,
    4. et al
    . Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care 2004;27:2806–2812pmid:15562189
    OpenUrlAbstract/FREE Full Text
  4. ↵
    1. Jacobs DR Jr.,
    2. Gross MD,
    3. Tapsell LC
    . Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 2009;89(Suppl.):1543S–1548Spmid:19279083
    OpenUrlAbstract/FREE Full Text
  5. ↵
    1. Nettleton JA,
    2. Steffen LM,
    3. Ni H,
    4. Liu K,
    5. Jacobs DR Jr.
    . Dietary patterns and risk of incident type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2008;31:1777–1782pmid:18544792
    OpenUrlAbstract/FREE Full Text
    1. Hodge AM,
    2. English DR,
    3. O’Dea K,
    4. Giles GG
    . Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am J Epidemiol 2007;165:603–610pmid:17220476
    OpenUrlAbstract/FREE Full Text
  6. ↵
    1. Montonen J,
    2. Knekt P,
    3. Härkänen T,
    4. et al
    . Dietary patterns and the incidence of type 2 diabetes. Am J Epidemiol 2005;161:219–227pmid:15671254
    OpenUrlAbstract/FREE Full Text
  7. ↵
    1. Fung TT,
    2. Schulze M,
    3. Manson JE,
    4. Willett WC,
    5. Hu FB
    . Dietary patterns, meat intake, and the risk of type 2 diabetes in women. Arch Intern Med 2004;164:2235–2240pmid:15534160
    OpenUrlCrossRefPubMedWeb of Science
  8. ↵
    1. van Dam RM,
    2. Rimm EB,
    3. Willett WC,
    4. Stampfer MJ,
    5. Hu FB
    . Dietary patterns and risk for type 2 diabetes mellitus in U.S. men. Ann Intern Med 2002;136:201–209pmid:11827496
    OpenUrlCrossRefPubMedWeb of Science
  9. ↵
    1. Villegas R,
    2. Yang G,
    3. Gao YT,
    4. et al
    . Dietary patterns are associated with lower incidence of type 2 diabetes in middle-aged women: the Shanghai Women’s Health Study. Int J Epidemiol 2010;39:889–899pmid:20231261
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Hankin JH,
    2. Stram DO,
    3. Arakawa K,
    4. et al
    . Singapore Chinese Health Study: development, validation, and calibration of the quantitative food frequency questionnaire. Nutr Cancer 2001;39:187–195pmid:11759279
    OpenUrlCrossRefPubMedWeb of Science
  11. ↵
    1. Seow A,
    2. Shi CY,
    3. Chung FL,
    4. et al
    . Urinary total isothiocyanate (ITC) in a population-based sample of middle-aged and older Chinese in Singapore: relationship with dietary total ITC and glutathione S-transferase M1/T1/P1 genotypes. Cancer Epidemiol Biomarkers Prev 1998;7:775–781pmid:9752985
    OpenUrlAbstract
  12. ↵
    1. Seow A,
    2. Shi CY,
    3. Franke AA,
    4. Hankin JH,
    5. Lee HP,
    6. Yu MC
    . Isoflavonoid levels in spot urine are associated with frequency of dietary soy intake in a population-based sample of middle-aged and older Chinese in Singapore. Cancer Epidemiol Biomarkers Prev 1998;7:135–140pmid:9488588
    OpenUrlAbstract
  13. ↵
    1. Odegaard AO,
    2. Pereira MA,
    3. Koh WP,
    4. Arakawa K,
    5. Lee HP,
    6. Yu MC
    . Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 2008;88:979–985pmid:18842784
    OpenUrlAbstract/FREE Full Text
  14. ↵
    1. Odegaard AO,
    2. Koh WP,
    3. Arakawa K,
    4. Yu MC,
    5. Pereira MA
    . Soft drink and juice consumption and risk of physician-diagnosed incident type 2 diabetes: the Singapore Chinese Health Study. Am J Epidemiol 2010;171:701–708pmid:20160170
    OpenUrlAbstract/FREE Full Text
  15. ↵
    International Expert Committee. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 2009;32:1327–1334pmid:19502545
    OpenUrlFREE Full Text
  16. ↵
    1. Salmerón J,
    2. Manson JE,
    3. Stampfer MJ,
    4. Colditz GA,
    5. Wing AL,
    6. Willett WC
    . Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997;277:472–477pmid:9020271
    OpenUrlCrossRefPubMedWeb of Science
  17. ↵
    1. Risérus U,
    2. Willett WC,
    3. Hu FB
    . Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 2009;48:44–51pmid:19032965
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Willi C,
    2. Bodenmann P,
    3. Ghali WA,
    4. Faris PD,
    5. Cornuz J
    . Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2007;298:2654–2664pmid:18073361
    OpenUrlCrossRefPubMedWeb of Science
  19. ↵
    1. Chiolero A,
    2. Faeh D,
    3. Paccaud F,
    4. Cornuz J
    . Consequences of smoking for body weight, body fat distribution, and insulin resistance. Am J Clin Nutr 2008;87:801–809pmid:18400700
    OpenUrlAbstract/FREE Full Text
  20. ↵
    1. Dietrich M,
    2. Block G,
    3. Norkus EP,
    4. et al
    . Smoking and exposure to environmental tobacco smoke decrease some plasma antioxidants and increase gamma-tocopherol in vivo after adjustment for dietary antioxidant intakes. Am J Clin Nutr 2003;77:160–166pmid:12499336
    OpenUrlAbstract/FREE Full Text
  21. ↵
    1. Li N,
    2. Frigerio F,
    3. Maechler P
    . The sensitivity of pancreatic beta-cells to mitochondrial injuries triggered by lipotoxicity and oxidative stress. Biochem Soc Trans 2008;36:930–934pmid:18793163
    OpenUrlCrossRefPubMedWeb of Science
  22. ↵
    1. Janzon L,
    2. Berntorp K,
    3. Hanson M,
    4. Lindell SE,
    5. Trell E
    . Glucose tolerance and smoking: a population study of oral and intravenous glucose tolerance tests in middle-aged men. Diabetologia 1983;25:86–88pmid:6354814
    OpenUrlPubMedWeb of Science
  23. ↵
    1. Sargeant LA,
    2. Khaw KT,
    3. Bingham S,
    4. et al
    . Cigarette smoking and glycaemia: the EPIC-Norfolk study. Int J Epidemiol 2001;30:547–554pmid:11416081
    OpenUrlAbstract/FREE Full Text
  24. ↵
    1. Hozawa A,
    2. Jacobs DR Jr.,
    3. Steffes MW,
    4. Gross MD,
    5. Steffen LM,
    6. Lee DH
    . Associations of serum carotenoid concentrations with the development of diabetes and with insulin concentration: interaction with smoking: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol 2006;163:929–937pmid:16597706
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top
Diabetes Care: 34 (4)

In this Issue

April 2011, 34(4)
  • Table of Contents
  • About the Cover
  • Index by Author
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Dietary Patterns and Incident Type 2 Diabetes in Chinese Men and Women
(Your Name) has forwarded a page to you from Diabetes Care
(Your Name) thought you would like to see this page from the Diabetes Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Dietary Patterns and Incident Type 2 Diabetes in Chinese Men and Women
Andrew O. Odegaard, Woon-Puay Koh, Lesley M. Butler, Sue Duval, Myron D. Gross, Mimi C. Yu, Jian-Min Yuan, Mark A. Pereira
Diabetes Care Apr 2011, 34 (4) 880-885; DOI: 10.2337/dc10-2350

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Dietary Patterns and Incident Type 2 Diabetes in Chinese Men and Women
Andrew O. Odegaard, Woon-Puay Koh, Lesley M. Butler, Sue Duval, Myron D. Gross, Mimi C. Yu, Jian-Min Yuan, Mark A. Pereira
Diabetes Care Apr 2011, 34 (4) 880-885; DOI: 10.2337/dc10-2350
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • RESEARCH DESIGN AND METHODS
    • RESULTS
    • CONCLUSIONS
    • Acknowledgments
    • Footnotes
    • References
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

Original Research

  • n-3 Fatty Acid Biomarkers and Incident Type 2 Diabetes: An Individual Participant-Level Pooling Project of 20 Prospective Cohort Studies
  • Cardiovascular and Renal Disease Burden in Type 1 Compared With Type 2 Diabetes: A Two-Country Nationwide Observational Study
  • Glycemic Outcome Associated With Insulin Pump and Glucose Sensor Use in Children and Adolescents With Type 1 Diabetes. Data From the International Pediatric Registry SWEET
Show more Original Research

Epidemiology/Health Services Research

  • Social Deprivation and Incident Diabetes-Related Foot Disease in Patients With Type 2 Diabetes: A Population-Based Cohort Study
  • Productivity Benefits of Preventing Type 2 Diabetes in Australia: A 10-Year Analysis
  • Temporal Trends in Incident Hospitalization for Diabetes-Related Foot Ulcer in Type 2 Diabetes: The Fremantle Diabetes Study
Show more Epidemiology/Health Services Research

Similar Articles

Navigate

  • Current Issue
  • Standards of Care Guidelines
  • Online Ahead of Print
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Care Print ISSN: 0149-5992, Online ISSN: 1935-5548.