Skip to main content
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care
  • Subscribe
  • Log in
  • My Cart
  • Follow ada on Twitter
  • RSS
  • Visit ada on Facebook
Diabetes Care

Advanced Search

Main menu

  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
  • More from ADA
    • Diabetes
    • Clinical Diabetes
    • Diabetes Spectrum
    • ADA Standards of Medical Care
    • ADA Scientific Sessions Abstracts
    • BMJ Open Diabetes Research & Care

User menu

  • Subscribe
  • Log in
  • My Cart

Search

  • Advanced search
Diabetes Care
  • Home
  • Current
    • Current Issue
    • Online Ahead of Print
    • Special Article Collections
    • ADA Standards of Medical Care
  • Browse
    • By Topic
    • Issue Archive
    • Saved Searches
    • Special Article Collections
    • ADA Standards of Medical Care
  • Info
    • About the Journal
    • About the Editors
    • ADA Journal Policies
    • Instructions for Authors
    • Guidance for Reviewers
  • Reprints/Reuse
  • Advertising
  • Subscriptions
    • Individual Subscriptions
    • Institutional Subscriptions and Site Licenses
    • Access Institutional Usage Reports
    • Purchase Single Issues
  • Alerts
    • E­mail Alerts
    • RSS Feeds
  • Podcasts
    • Diabetes Core Update
    • Special Podcast Series: Therapeutic Inertia
    • Special Podcast Series: Influenza Podcasts
    • Special Podcast Series: SGLT2 Inhibitors
    • Special Podcast Series: COVID-19
  • Submit
    • Submit a Manuscript
    • Journal Policies
    • Instructions for Authors
    • ADA Peer Review
Cardiovascular and Metabolic Risk

Metabolic Syndrome and COVID-19 Mortality Among Adult Black Patients in New Orleans

  1. John Xie1,
  2. Yuanhao Zu2,
  3. Ala Alkhatib1,
  4. Thaidan T. Pham3,
  5. Frances Gill3,
  6. Albert Jang4,
  7. Stella Radosta4,
  8. Gerard Chaaya5,
  9. Leann Myers2,
  10. Jerry S. Zifodya1,
  11. Christine M. Bojanowski1,
  12. Nassir F. Marrouche6,
  13. Franck Mauvais-Jarvis7,8 and
  14. Joshua L. Denson1⇑
  1. 1Section of Pulmonary Diseases, Critical Care and Environmental Medicine, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA
  2. 2Department of Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
  3. 3Tulane University School of Medicine, New Orleans, LA
  4. 4John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA
  5. 5Section of Hematology and Medical Oncology, John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA
  6. 6Section of Cardiology/Tulane University Heart & Vascular Institute, Tulane University School of Medicine, New Orleans, LA
  7. 7Section of Endocrinology, John W. Deming Department of Medicine Tulane University School of Medicine, New Orleans, LA
  8. 8Southeast Louisiana Veterans Health Care System, New Orleans, LA
  1. Corresponding author: Joshua L. Denson, jdenson{at}tulane.edu
Diabetes Care 2021 Jan; 44(1): 188-193. https://doi.org/10.2337/dc20-1714
PreviousNext
  • Article
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF
Loading

Abstract

OBJECTIVE Coronavirus disease 2019 (COVID-19) mortality is high in patients with hypertension, obesity, and diabetes. We examined the association between hypertension, obesity, and diabetes, individually and clustered as metabolic syndrome (MetS), and COVID-19 outcomes in patients hospitalized in New Orleans during the peak of the outbreak.

RESEARCH DESIGN AND METHODS Data were collected from 287 consecutive patients with COVID-19 hospitalized at two hospitals in New Orleans, LA, from 30 March to 5 April 2020. MetS was identified per World Health Organization criteria.

RESULTS Among 287 patients (mean age 61.5 years; female, 56.8%; non-Hispanic Black, 85.4%), MetS was present in 188 (66%). MetS was significantly associated with mortality (adjusted odds ratio [aOR] 3.42 [95% CI 1.52–7.69]), intensive care unit requirement (ICU) (aOR 4.59 [CI 2.53–8.32]), invasive mechanical ventilation (IMV) (aOR 4.71 [95% CI 2.50–8.87]), and acute respiratory distress syndrome (ARDS) (aOR 4.70 [95% CI 2.25–9.82]) compared with non-MetS. Multivariable analyses of hypertension, obesity, and diabetes individually showed no association with mortality. Obesity was associated with ICU (aOR 2.18 [95% CI 1.25–3.81]), ARDS (aOR 2.44 [95% CI 1.28–4.65]), and IMV (aOR 2.36 [95% CI 1.33–4.21]). Diabetes was associated with ICU (aOR 2.22 [95% CI 1.24–3.98]) and IMV (aOR 2.12 [95% CI 1.16–3.89]). Hypertension was not significantly associated with any outcome. Inflammatory biomarkers associated with MetS, CRP and lactate dehydrogenase (LDH), were associated with mortality (CRP [aOR 3.66] [95% CI 1.22–10.97] and LDH [aOR 3.49] [95% CI 1.78–6.83]).

CONCLUSIONS In predominantly Black patients hospitalized for COVID-19, the clustering of hypertension, obesity, and diabetes as MetS increased the odds of mortality compared with these comorbidities individually.

Introduction

Coronavirus disease 2019 (COVID-19), first described in Wuhan, China, in December 2019, is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1). It has spread rapidly worldwide, infecting >7 million people as of 18 June 2020, with the U.S. leading the world both in number of cases (∼2 million) and fatalities (>100,000) (2). New Orleans, LA, was an early epicenter, with the highest death rate per capita in the U.S. (37.93 per 100,000 people) noted in early April (3). One-third of individuals hospitalized for COVID-19 have severe pneumonia requiring admission to an intensive care unit (ICU) (4), often resulting in acute respiratory distress syndrome (ARDS) (5). A subset of critically ill patients with COVID-19 develop a “cytokine storm” (6,7), similar to that described in prior β-coronavirus outbreaks (8). It is proposed that high levels of proinflammatory chemokines and cytokines are seen in the cytokine storm, and the subsequent recruitment of effector inflammatory cells into the lungs, rather than the virus itself, drives COVID-19–related ARDS (8).

Cases of severe and fatal COVID-19 are associated with comorbid conditions including hypertension, obesity, diabetes, and cardiovascular disease (1,4,9–12). Among case subjects with fatal COVID-19, obesity, hypertension, and diabetes are almost always present in higher proportion than chronic heart or pulmonary disease. However, a pathophysiological mechanism explaining these associations has not been established. Metabolic syndrome (MetS) is defined by the coexistence of metabolic comorbidities that contribute to an increased risk of cardiovascular disease and is diagnosed if three or more of the following five metabolic comorbidities exist: obesity, prediabetes/diabetes, hypertension, hypertriglyceridemia, and reduced HDL levels (13). MetS is a chronic low-grade inflammatory state, with elevated circulating concentrations of CRP, interleukin 6 (IL-6), and IL-1β (14,15). We studied the relationship between hypertension, obesity, and diabetes—individually and clustered as MetS—and COVID-19 severe and fatal outcomes in the urban population of New Orleans, LA, a population with high risk of metabolic disease. Louisiana is among the states with the highest prevalence of diabetes, obesity, and hypertension, with some of the worst health outcomes in the U.S. (16).

Research Design and Methods

We performed a retrospective, observational study of hospitalized patients with COVID-19 (confirmed by SARS-CoV-2 PCR) at two tertiary academic hospitals in New Orleans, LA, from 30 March to 5 April 2020. This study was reviewed and approved with waivers of consent by the Tulane University Biomedical Institutional Review Board and the University Medical Center New Orleans Research Review Council.

Data Collection, Study Cohorts, and Outcome Measures

Demographic and clinical data were collected via chart review by four study investigators with duplicated data collection efforts to ensure fidelity of data, with any discrepancies resolved by chart review from the primary investigator. The data set, including information from hospital admission to discharge or death, was complete as of 27 May 2020, with no patients remaining in the hospital. Data included age, sex, race, ethnicity, admission/discharge dates, ICU admission, invasive mechanical ventilation (IMV), hospital mortality, comorbid conditions to calculate the Charlson Comorbidity Index (17), last recorded hemoglobin A1c, BMI on admission calculated from height and weight, history of hypertension or antihypertensive medication use, last recorded triglyceride (TG) level, last recorded HDL level along with history of hyperlipidemia and concurrent statin use, and other laboratory values on admission (specifically ferritin, CRP, and lactate dehydrogenase [LDH]). Both TG and HDL levels used were obtained from the patient’s record prior to admission when possible as a more accurate measure, recognizing that these levels may fluctuate with decreased diet and acute inflammation (18). TG levels were not included in the MetS calculation or in subgroup analyses if the patient had received or was currently receiving propofol infusion, as propofol infusions may lead to hypertriglyceridemia (19). In these cases, TG levels were recorded from either before admission or prior to propofol initiation, if available.

Patients were divided into two cohorts, MetS and non-MetS, according to modified World Health Organization criteria (13). MetS was defined as having at least three of the following five factors: 1) prediabetes (hemoglobin A1c ≥5.7%) or documented history of diabetes or diabetic medication use, 2) obesity (BMI ≥30 kg/m2), 3) history of hypertension or antihypertensive medication use, 4) TG ≥150 mg/dL, and 5) HDL <50 mg/dL for women and <40 mg/dL for men or use of a cholesterol-lowering medication with documented history of hypercholesterolemia. These modified criteria allow for improved reproducibility of these study results using similar large data sets (20). The primary outcome for all analyses was hospital mortality. Secondary outcomes included need for ICU, IMV, a diagnosis of ARDS using the ratio of arterial oxygen partial pressure (PAo2) to fractional inspired oxygen (FIo2) as defined by Berlin criteria (21), hospital length of stay (LOS), and hospital readmission after initial discharge. To examine the association between clinically significant elevations in inflammatory markers and patient outcomes in MetS, appropriate cutoff values were chosen from published data that have previously been described to affect mortality in patients with COVID-19. These cutoff values include: CRP >41.2 mg/L (22), LDH >365 units/L (22), and ferritin >300 ng/mL (1). These inflammatory markers were also analyzed as continuous variables in a separate analysis. Prespecified subgroup analyses were also completed to determine the association of the individual MetS-associated factors defined above with primary and secondary outcomes. Given the high percentage of Black non-Hispanic patients, post hoc analyses examining these subjects were performed in a similar manner as described for the overall population.

Statistical Analysis

Student t test was used for statistical comparison of numerical variables in different groups, with a two-tailed P value ≤0.05 set as statistically significant. Pearson χ2 test was used to compare categorical variables. For the comparison of outcomes among MetS and non-MetS, a multivariable logistic regression model (or multivariable linear regression model when appropriate) was constructed including age, sex, race, individual hospital site, and Charlson Comorbidity Index as covariates. Separate but similar models were constructed for each subgroup analysis to evaluate the risk of each MetS diagnostic criteria individually (i.e., prediabetes/diabetes, hypertension, obesity, elevated TG, and low HDL) without inclusion of MetS itself in these models. Statistical analyses were performed using SAS Enterprise Guide, version 6.1, and SAS, version 9.4 (both from SAS Institute).

Results

Study Population

We collected data from 287 hospitalized patients with confirmed COVID-19. Mean age was 61.5 years, 56.8% were females, and the majority (245; 85.4%) self-identified as non-Hispanic Black. Baseline characteristics of our patient population are presented in Table 1. The most common comorbid conditions were hypertension (80%), obesity (65%), diabetes (54%), and low HDL (39%). These were present in higher proportion than congestive heart failure (14%) chronic obstructive pulmonary disease (10%), and asthma (10%). The median LOS was 10 days (interquartile range [IQR] 10). In total, 130 patients (45%) required admission to the ICU, of whom 108 (83%) required IMV, 81 (62%) developed ARDS, and 58 (20%) died during the study period. Characteristics of disease severity are presented for the patients who required ICU admission at any point during the hospitalization compared with patients who never required ICU admission (Table 1).

View this table:
  • View inline
  • View popup
Table 1

Patient characteristics and severity of disease

Metabolic Syndrome Is Associated With Hospital Mortality

A total of 188 patients (66%) met the criteria for MetS, and the remaining 99 (34%) were included in the non-MetS control group (Table 2). The two cohorts did not differ in age or sex, but non-Hispanic Black patients were present in higher proportion in the MetS group than in the non-MetS group (91% vs. 75%, respectively; P = 0.0009). Among the entire cohort, CRP, LDH, and ferritin levels were available in 270, 273, and 275 patients, respectively. CRP and LDH serum concentrations were more elevated in the MetS group than in the non-MetS group (Table 2). Similar observations were made in the non-Hispanic Black population when analyzed by race (Supplementary Table 1).

View this table:
  • View inline
  • View popup
Table 2

MetS characteristics

In adjusted outcome analyses, MetS was associated with 3.42 increased odds of hospital mortality (95% CI 1.52–7.69), 4.59 increased odds of ICU requirement (95% CI 2.53–8.32), 4.71 increased odds of IMV (95% CI 2.50–8.87), and 4.70 increased odds of ARDS (95% CI 2.25–9.82) when compared with non-MetS (Table 3). Similar observations were noted in the non-Hispanic Black population when analyzed by race (Supplementary Table 2).

View this table:
  • View inline
  • View popup
Table 3

Multivariable analyses, MetS vs. non-MetS

In contrast to comorbidities clustered as MetS, in separate subgroup multivariable analyses, none of the individual MetS-associated comorbidities were significantly associated with hospital mortality (Fig. 1). However, obesity was associated with increased odds of ICU requirement (adjusted odds ratio [aOR] 2.18 [95% CI 1.25–3.81]), ARDS (aOR 2.44 [95% CI 1.28–4.65]), and IMV (aOR 2.36 [95% CI 1.33–4.21]). Similarly, prediabetes/diabetes was associated with increased odds of ICU requirement (aOR 2.22 [95% CI 1.24–3.98]) and IMV (aOR 2.12 [95% CI 1.16–3.89]). Low HDL was associated with increased odds of ICU requirement (aOR 2.16 [95% CI 1.29–3.60]), ARDS (aOR 2.29 [95% CI 1.28–4.09]), and IMV (aOR 1.72 [95% CI 1.02–2.89]). TG and hypertension were not associated with any primary or secondary outcomes (Fig. 1). In non-Hispanic Black patients, MetS was similarly associated with hospital mortality (aOR 3.30 [95% CI 1.31–8.32]), but none of the individual MetS-associated comorbidities were in separate subgroup multivariable analyses (Supplementary Fig. 1). In non-Hispanic Black patients, obesity was associated with increased odds of ICU requirement (aOR 2.76 [95% CI 1.49–5.11]), ARDS (aOR 2.88 [95% CI 1.43–5.79]), and IMV (aOR 3.14 [95% CI 1.64–6.03]). Diabetes and hypertension were not associated with primary or secondary outcomes (Supplementary Fig. 1).

Figure 1
  • Download figure
  • Open in new tab
  • Download powerpoint
Figure 1

Forrest plot of MetS and individual MetS components on primary and secondary outcomes. Multivariable regression analysis for MetS itself and separate analyses for MetS components were performed. All analyses were adjusted for age, sex, race/ethnicity, hospital site, and the Charlson Comorbidity Index. DM, diabetes mellitus; HTN, hypertension.

Inflammatory Markers Are Associated With Hospital Mortality

Using previously described cutoff values shown to correlate with increased disease severity or mortality in patients with COVID-19, the inflammatory markers CRP and LDH were significantly associated with MetS (Supplementary Table 3). Ferritin was the only biomarker that did not show a significant association with MetS. In non-Hispanic Black patients, MetS was associated only with increased CRP (Supplementary Table 4). When inflammatory markers were compared with patient outcomes (Supplementary Fig. 2), CRP, ferritin, and LDH were all significantly associated with the need for ICU, IMV, and a diagnosis of ARDS, but only CRP and LDH were significantly associated with hospital mortality: CRP (aOR 3.66 [95% CI 1.22–10.97]) and LDH (aOR 3.49 [95% CI 1.78–6.83]). Similar observations were made in non-Hispanic Black patients, except CRP was also not associated with hospital mortality (Supplementary Fig. 3).

Conclusions

The main finding of this multicenter, observational study of hospitalized patients with COVID-19 in New Orleans during the peak of the outbreak is that patients with MetS exhibited a roughly four times greater odds of severe and especially fatal COVID-19 outcomes compared with those without MetS, following multivariable analyses that accounted for age, sex, race, hospital site, and the Charlson Comorbidity Index. In separate subgroup multivariable analyses, however, hypertension, obesity, prediabetes/diabetes, and low HDL, although associated individually with disease severity, were not associated individually with mortality. This suggests that MetS should be considered a composite predictor of COVID-19 lethal outcome, increasing the odds of mortality by the combined effects of its individual components. Previous studies have reported that obese patients are at increased risk for the severe manifestations of COVID-19 (10,23,24). In this study, hospital mortality was not increased by obesity alone. Diabetes has also been reported to increase the risk of ICU requirement by two- to threefold in patients with COVID-19, as well as mortality rates, compared with the overall population (25). However, hospital mortality was not significantly increased by diabetes alone in our population. Hypertension has been reported as the most frequently associated comorbidity in fatal COVID-19 outcomes (1,4,9–12). In our population, hypertension was not associated with any primary or secondary outcomes. Together, this suggests that a combined effect of these comorbidities may be driving the association of MetS with COVID-19 fatal outcomes.

The relationship between hypertension, obesity, and diabetes and critical COVID-19 outcomes has been observed in many large cohort studies (1,4,9–12). Among case subjects with fatal COVID-19, hypertension, obesity, and diabetes were always present in higher proportion than pulmonary or heart disease, suggesting that metabolic diseases predict worse outcomes in COVID-19 than diseases in which lung and heart functions are compromised. One possible explanation, as our study suggests, is that these metabolic comorbidities (combined as MetS) are characterized by a low-grade systemic inflammation (14). Previous reports show that compared with case subjects with moderate COVID-19, case subjects with severe COVID-19 exhibited higher serum levels of inflammatory markers such as CRP, ferritin, d-dimer, and LDH, as well as markedly higher levels of proinflammatory cytokines such as IL-6 and tumor necrosis factor-α (26,27). Similarly, our MetS cohort exhibited increased inflammatory biomarkers (CRP and LDH) when using cutoffs shown to predict COVID-19 mortality. Notably, CRP, ferritin, and LDH were all associated with two- to threefold increased odds of severe outcomes, and CRP and LDH were associated with 3.5-fold increased odds of hospital death. Therefore, the chronic low-grade systemic inflammation that characterizes individuals with MetS may provide a permissive inflammatory environment that intensifies the evolution toward ARDS and death (12). Further research into the underlying mechanisms by which MetS increases COVID-19 mortality is needed.

Our cohort is unique. Our hospitals care for a predominantly non-Hispanic Black population (85% of our cohort) with a high prevalence of comorbidities who have been greatly affected by the COVID-19 pandemic (3,28). A recent study including >1,000 hospitalized non-Hispanic Black patients from a hospital system in Louisiana caring for a healthier population (only 9% were uninsured) (29) reported a mean Charlson Comorbidity Index of 1.3 (29). By contrast, our cohort of 245 hospitalized Black non-Hispanic patients in downtown New Orleans (74% from a public hospital and mostly uninsured) exhibited a mean Charlson Comorbidity Index of 3.5. This is further highlighted by our control group, which, despite not meeting criteria for MetS, showed elevated rates of hypertension (54%), obesity (53%), and prediabetes/diabetes (31%) and mean Charlson Comorbidity Score (2.8).

Another important consideration of our study is the effect of sex on COVID-19 outcomes. Our hospitalized population exhibited a predominance of women (56%), which was also observed in another study in non-Hispanic Black patients from southeastern Louisiana (29). This predominance of women contrasts with most large studies in predominantly non-Hispanic White, European, or Asian patients in whom COVID-19 hospitalization showed a strong predominance of men, averaging 70% (11,30–34). Thus, in our population, COVID-19 could affect women and men differently.

This study has several limitations. As a retrospective observational study, our conclusions can only be based on associations and do not imply causation. Although we used multivariable regression models to adjust for relevant covariates and clinically relevant data evaluations (e.g., taking into account the consideration of propofol infusion with regard to TG levels), these data cannot fully account for all unknown potential confounders.

Conclusion

In a predominantly non-Hispanic Black population hospitalized for COVID-19, the clustering of hypertension, obesity, and diabetes as MetS and inflammatory markers increased the odds of mortality compared with these comorbidities individually. These findings suggest that MetS is a composite predictor of COVID-19 lethal outcome, in which the combined effect of its related comorbidities was significantly associated with mortality, possibly via inflammation.

Article Information

Funding. Funding for this work was provided in part by the Tulane University Physician Scientist Pipeline Program (to J.L.D.); American Diabetes Association grants 7-20-COVID-053 (to J.L.D.) and 7-20-COVID-051 (to F.M.-J.); National Institute of General Medical Sciences/National Institutes of Health award U54 GM104940, which funds the Louisiana Clinical and Translational Science Center (to J.L.D.); National Institutes of Health awards DK074970 and DK107444 (to F.M.-J.); and the U.S. Department of Veterans Affairs Merit Review Award BX003725 (to F.M.-J.).

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. J.X., A.A., T.T.P., and F.G. performed retrospective chart review. Y.Z. and L.M. analyzed the raw data and performed statistics. J.X., A.J., S.R., and J.L.D. wrote the initial manuscript. F.M.-J. and J.L.D. analyzed the final data and wrote and edited the final draft. G.C., L.M., J.S.Z., C.M.B., and N.F.M. critically reviewed the manuscript. All authors read and approved the final manuscript. J.L.D. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Footnotes

  • See accompanying articles, pp. 1, 8, 11, and 258.

  • This article contains supplementary material online at https://doi.org/10.2337/figshare.12753707.

  • This article is part of a special article collection available at https://care.diabetesjournals.org/collection/diabetes-and-COVID19.

  • Received July 8, 2020.
  • Accepted July 29, 2020.
  • © 2020 by the American Diabetes Association
https://www.diabetesjournals.org/content/license

Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. More information is available at https://www.diabetesjournals.org/content/license.

References

  1. ↵
    1. Zhou F,
    2. Yu T,
    3. Du R, et al
    . Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054–1062
    OpenUrlCrossRefPubMed
  2. ↵
    1. Johns Hopkins University & Medicin
    e. COVID-19 case tracker. Accessed 26 May 2020. Available from https://coronavirus.jhu.edu/us-map
  3. ↵
    1. Louisiana Department of Health
    . COVID-19. Accessed 31 May 2020. Available from https://ldh.la.gov/Coronavirus/
  4. ↵
    1. Richardson S,
    2. Hirsch JS,
    3. Narasimhan M, et al.; and the Northwell COVID-19 Research Consortium
    . Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2052–2059
    OpenUrlPubMed
  5. ↵
    1. Bhatraju PK,
    2. Ghassemieh BJ,
    3. Nichols M, et al
    . Covid-19 in critically ill patients in the seattle region - case series. N Engl J Med 2020;382:2012–2022
    OpenUrlCrossRefPubMed
  6. ↵
    1. Ruscitti P,
    2. Berardicurti O,
    3. Iagnocco A,
    4. Giacomelli R
    . Cytokine storm syndrome in severe COVID-19. Autoimmun Rev 2020;19:102562
    OpenUrlPubMed
  7. ↵
    1. McGonagle D,
    2. Sharif K,
    3. O’Regan A,
    4. Bridgewood C
    . The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev 2020;19:102537
    OpenUrlCrossRefPubMed
  8. ↵
    1. Channappanavar R,
    2. Perlman S
    . Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39:529–539
    OpenUrlCrossRefPubMed
  9. ↵
    1. Petrilli CM,
    2. Jones SA,
    3. Yang J, et al
    . Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ 2020;369:m1966
    OpenUrlAbstract/FREE Full Text
  10. ↵
    1. Gao F,
    2. Zheng KI,
    3. Wang XB, et al
    . Obesity is a risk factor for greater COVID-19 severity. Diabetes Care 2020;43:e72–e74
    OpenUrlFREE Full Text
  11. ↵
    1. Guan WJ,
    2. Ni ZY,
    3. Hu Y, et al.; China Medical Treatment Expert Group for Covid-19
    . Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382:1708–1720
    OpenUrlCrossRefPubMed
  12. ↵
    1. Mauvais-Jarvis F
    . Aging, male sex, obesity, and metabolic inflammation create the perfect storm for COVID-19. Diabetes 2020;69:1857–1863
    OpenUrlAbstract/FREE Full Text
  13. ↵
    1. Grundy SM,
    2. Cleeman JI,
    3. Daniels SR, et al.; American Heart Association; National Heart, Lung, and Blood Institute
    . Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735–2752
    OpenUrlFREE Full Text
  14. ↵
    1. Saltiel AR,
    2. Olefsky JM
    . Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest 2017;127:1–4
    OpenUrlCrossRefPubMed
  15. ↵
    1. Esser N,
    2. Legrand-Poels S,
    3. Piette J,
    4. Scheen AJ,
    5. Paquot N
    . Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 2014;105:141–150
    OpenUrlCrossRefPubMed
  16. ↵
    1. Shrestha SS,
    2. Honeycutt AA,
    3. Yang W, et al
    . Economic costs attributable to diabetes in each U.S. State. Diabetes Care 2018;41:2526–2534
    OpenUrlAbstract/FREE Full Text
  17. ↵
    1. Charlson ME,
    2. Pompei P,
    3. Ales KL,
    4. MacKenzie CR
    . A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 1987;40:373–383
    OpenUrlCrossRefPubMedWeb of Science
  18. ↵
    1. Jahangiri A
    . High-density lipoprotein and the acute phase response. Curr Opin Endocrinol Diabetes Obes 2010;17:156–160
    OpenUrlCrossRefPubMed
  19. ↵
    1. Devlin JW,
    2. Lau AK,
    3. Tanios MA
    . Propofol-associated hypertriglyceridemia and pancreatitis in the intensive care unit: an analysis of frequency and risk factors. Pharmacotherapy 2005;25:1348–1352
    OpenUrlCrossRefPubMedWeb of Science
  20. ↵
    1. Kobo O,
    2. Leiba R,
    3. Avizohar O,
    4. Karban A
    . Normal body mass index (BMI) can rule out metabolic syndrome: an Israeli cohort study. Medicine (Baltimore) 2019;98:e14712
    OpenUrl
  21. ↵
    1. Ranieri VM,
    2. Rubenfeld GD,
    3. Thompson BT, et al.; ARDS Definition Task Force
    . Acute respiratory distress syndrome: the Berlin Definition. JAMA 2012;307:2526–2533
    OpenUrlCrossRefPubMedWeb of Science
  22. ↵
    1. Yan L,
    2. Zhang H-T,
    3. Goncalves J, et al
    . An interpretable mortality prediction model for COVID-19 patients. Nat Mach Intell 2020;2:283–288
    OpenUrl
  23. ↵
    1. Zhu L,
    2. She ZG,
    3. Cheng X, et al
    . Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab 2020;31:1068–1077.e3
    OpenUrlCrossRefPubMed
  24. ↵
    1. Cai Q,
    2. Chen F,
    3. Wang T, et al
    . Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 2020;43:1392–1398
    OpenUrlAbstract/FREE Full Text
  25. ↵
    1. Riddle MC,
    2. Buse JB,
    3. Franks PW, et al
    . COVID-19 in people with diabetes: urgently needed lessons from early reports. Diabetes Care 2020;43:1378–1381
    OpenUrlFREE Full Text
  26. ↵
    1. Chen G,
    2. Wu D,
    3. Guo W, et al
    . Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020;130:2620–2629
    OpenUrlCrossRefPubMed
  27. ↵
    1. Huang C,
    2. Wang Y,
    3. Li X, et al
    . Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506
    OpenUrlCrossRefPubMed
  28. ↵
    1. Yancy CW
    . COVID-19 and African Americans. JAMA 2020;323:1891–1892
    OpenUrlCrossRefPubMed
  29. ↵
    1. Price-Haywood EG,
    2. Burton J,
    3. Fort D,
    4. Seoane L
    . Hospitalization and mortality among black patients and white patients with Covid-19. N Engl J Med 2020;382:2534–2543
    OpenUrlCrossRefPubMed
  30. ↵
    1. Mauvais-Jarvis F,
    2. Bairey Merz N,
    3. Barnes PJ, et al
    . Sex and gender: modifiers of health, disease and medicine. Lancet 2020;396:565–582
    OpenUrlCrossRefPubMed
    1. Onder G,
    2. Rezza G,
    3. Brusaferro S
    . Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020;323:1775–1776
    OpenUrlPubMed
    1. COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention
    . Coronavirus disease-19: the first 7,755 cases in the Republic of Korea [published correction appears in Osong Public Health Res Perspect 2020;11:146]. Osong Public Health Res Perspect 2020;11:85–90
    OpenUrlPubMed
    1. Richardson S,
    2. Hirsch JS,
    3. Narasimhan M,
    4. Crawford JM,
    5. McGinn T,
    6. Davidson KW; Northwell COVID-19 Research Consortium
    . Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA 2020;323:2052–2059
    OpenUrlPubMed
  31. ↵
    1. Klein SL,
    2. Dhakal S,
    3. Ursin RL,
    4. Deshpande S,
    5. Sandberg K,
    6. Mauvais-Jarvis F
    . Biological sex impacts COVID-19 outcomes. PLoS Pathog 2020;16:e1008570
    OpenUrlCrossRefPubMed
View Abstract
PreviousNext
Back to top
Diabetes Care: 44 (1)

In this Issue

January 2021, 44(1)
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by Author
  • Masthead (PDF)
Sign up to receive current issue alerts
View Selected Citations (0)
Print
Download PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Email Article

Thank you for your interest in spreading the word about Diabetes Care.

NOTE: We only request your email address so that the person you are recommending the page to knows that you wanted them to see it, and that it is not junk mail. We do not capture any email address.

Enter multiple addresses on separate lines or separate them with commas.
Metabolic Syndrome and COVID-19 Mortality Among Adult Black Patients in New Orleans
(Your Name) has forwarded a page to you from Diabetes Care
(Your Name) thought you would like to see this page from the Diabetes Care web site.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Citation Tools
Metabolic Syndrome and COVID-19 Mortality Among Adult Black Patients in New Orleans
John Xie, Yuanhao Zu, Ala Alkhatib, Thaidan T. Pham, Frances Gill, Albert Jang, Stella Radosta, Gerard Chaaya, Leann Myers, Jerry S. Zifodya, Christine M. Bojanowski, Nassir F. Marrouche, Franck Mauvais-Jarvis, Joshua L. Denson
Diabetes Care Jan 2021, 44 (1) 188-193; DOI: 10.2337/dc20-1714

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Add to Selected Citations
Share

Metabolic Syndrome and COVID-19 Mortality Among Adult Black Patients in New Orleans
John Xie, Yuanhao Zu, Ala Alkhatib, Thaidan T. Pham, Frances Gill, Albert Jang, Stella Radosta, Gerard Chaaya, Leann Myers, Jerry S. Zifodya, Christine M. Bojanowski, Nassir F. Marrouche, Franck Mauvais-Jarvis, Joshua L. Denson
Diabetes Care Jan 2021, 44 (1) 188-193; DOI: 10.2337/dc20-1714
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Research Design and Methods
    • Results
    • Conclusions
    • Article Information
    • Footnotes
    • References
  • Figures & Tables
  • Suppl Material
  • Info & Metrics
  • PDF

Related Articles

Cited By...

More in this TOC Section

  • Sex Differences in the Risk of Coronary Heart Disease Associated With Type 2 Diabetes: A Mendelian Randomization Analysis
  • Association of Plasma Leucine-Rich α-2 Glycoprotein 1, a Modulator of Transforming Growth Factor-β Signaling Pathway, With Incident Heart Failure in Individuals With Type 2 Diabetes
  • Association Between Achieving Inpatient Glycemic Control and Clinical Outcomes in Hospitalized Patients With COVID-19: A Multicenter, Retrospective Hospital-Based Analysis
Show more Cardiovascular and Metabolic Risk

Similar Articles

Navigate

  • Current Issue
  • Standards of Care Guidelines
  • Online Ahead of Print
  • Archives
  • Submit
  • Subscribe
  • Email Alerts
  • RSS Feeds

More Information

  • About the Journal
  • Instructions for Authors
  • Journal Policies
  • Reprints and Permissions
  • Advertising
  • Privacy Policy: ADA Journals
  • Copyright Notice/Public Access Policy
  • Contact Us

Other ADA Resources

  • Diabetes
  • Clinical Diabetes
  • Diabetes Spectrum
  • Scientific Sessions Abstracts
  • Standards of Medical Care in Diabetes
  • BMJ Open - Diabetes Research & Care
  • Professional Books
  • Diabetes Forecast

 

  • DiabetesJournals.org
  • Diabetes Core Update
  • ADA's DiabetesPro
  • ADA Member Directory
  • Diabetes.org

© 2021 by the American Diabetes Association. Diabetes Care Print ISSN: 0149-5992, Online ISSN: 1935-5548.