We have read with interest the report by Williams et al. (1) on diabetic limbs without critical ischemia. We have recently performed a similar study in 106 diabetic patients with polyneuropathy, 61 of whom had critical ischemia (2), which confirms the poor performance of ankle-brachial pressure index in these patients (1,2). At variance to Williams et al. (1), we were, however, able to demonstrate the usefulness of the pulsatility index to predict critical ischemia. A pulsatility index <1.2 recorded at the ankle arteries predicted critical limb ischemia with reasonably good sensitivity (0.87) and specificity (0.62); the positive and the negative predictive values were 0.64 and 0.86, respectively. We explain our differences to the findings of Williams et al. by the different Doppler devices that were employed. While Williams et al. had used a 8-MHz Doppler probe (1), we used a 10-MHz linear ultrasound probe with a color-flow duplex machine (Accuson 128XP10; Acuson, Mountain View, CA) in our study.

We demonstrated that qualitative, operator interpretation of the continuous Doppler waveform at the ankle for limbs without critical ischemia was more sensitive than quantitative analysis in detecting peripheral arterial occlusive disease. In our hands, qualitative waveform analysis achieved a sensitivity of 94% and specificity of 66% in the presence of clinically detectable peripheral neuropathy. Pulsatility index and other quantitative waveform analyses invariably failed to detect more severe peripheral arterial occlusive disease, with an overall sensitivity of 52%. In your study of limbs with and without critical ischemia, pulsatility index was demonstrated to achieve greater sensitivity at 87% (3).

There appear to be two fundamental differences between the respective studies. First, this study focused on the ability of commonly used screening methods to detect hemodynamically significant arterial disease not their ability to predict the presence of critical ischemia. Patients with critical ischemia were therefore excluded from our study. Further, we employed a relatively simple, single-crystal, continuous waveform analyzer and not a more complex device with a linear crystal array and color-flow facility. Color duplex imaging with waveform analysis of the lower limb has been demonstrated to be effective in detecting peripheral arterial occlusive disease (4). Our study used this modality as a gold standard not as a screening modality.

It is not surprising, therefore, that the results of quantitative analysis differ between the two studies.

DEAN T. WILLIAMS, MD KEITH G. HARDING, MD PATRICIA PRICE, PhD

From the Wound Healing Research Unit, Department of Surgery, University of Wales College of Medicine, Cardiff, U.K. Address correspondence to Dean T. Williams, MD, Wound Healing Research Unit, Department of Surgery and Cardiff Institute of Tissue Engineering and Repair, Cardiff University, U K. CF1 4UJ. E-mail: dwill1964@oad.com. © 2006 by the American Diabetes Association.

References

An Evaluation of the Efficacy of Methods Used in Screening for Lower-Limb Arterial Disease in Diabetes

Response to Janssen and Chantelau

We thank Janssen and Chantelau (1) for their interest in our study (2), which analyzed the efficacy of several commonly used lower-limb arterial screening modalities in diabetes.

We demonstrated that qualitative, operator interpretation of the continuous Doppler waveform at the ankle for limbs without critical ischemia was more sensitive than quantitative analysis in detecting peripheral arterial occlusive disease. In our hands, qualitative waveform analysis achieved a sensitivity of 94% and specificity of 66% in the presence of clinically detectable peripheral neuropathy. Pulsatility index and other quantitative waveform analyses invariably failed to detect more severe peripheral arterial occlusive disease, with an overall sensitivity of 52%. In your study of limbs with and without critical ischemia, pulsatility index was demonstrated to achieve greater sensitivity at 87% (3).

There appear to be two fundamental differences between the respective studies. First, this study focused on the ability of commonly used screening methods to detect hemodynamically significant arterial disease not their ability to predict the presence of critical ischemia. Patients with critical ischemia were therefore excluded from our study. Further, we employed a relatively simple, single-crystal, continuous waveform analyzer and not a more complex device with a linear crystal array and color-flow facility. Color duplex imaging with waveform analysis of the lower limb has been demonstrated to be effective in detecting peripheral arterial occlusive disease (4). Our study used this modality as a gold standard not as a screening modality.

It is not surprising, therefore, that the results of quantitative analysis differ between the two studies.

DEAN T. WILLIAMS, MD KEITH G. HARDING, MD PATRICIA PRICE, PhD

From the Wound Healing Research Unit, Department of Surgery, University of Wales College of Medicine, Cardiff, U.K. Address correspondence to Dean T. Williams, MD, Wound Healing Research Unit, Department of Surgery and Cardiff Institute of Tissue Engineering and Repair, Cardiff University, U.K. CF1 4UJ. E-mail: dwll1964@aad.com. © 2006 by the American Diabetes Association.

References
2. Williams DT, Harding KG, Price P: An evaluation of the efficacy of methods used in screening for lower-limb arterial dis-