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OBJECTIVE

Gut microbiome dysbiosis is associated with numerous diseases, including type 1
diabetes. This pilot study determines how geographical location affects themicro-
biome of infants at high risk for type 1 diabetes in a population of homogenous
HLA class II genotypes.

RESEARCH DESIGN AND METHODS

High-throughput 16S rRNA sequencing was performed on stool samples collected
from 90 high-risk, nonautoimmune infants participating in The Environmental
Determinants of Diabetes in the Young (TEDDY) study in the U.S., Germany, Swe-
den, and Finland.

RESULTS

Study site–specific patterns of gut colonization share characteristics across con-
tinents. Finland and Colorado have a significantly lower bacterial diversity, while
Sweden and Washington state are dominated by Bifidobacterium in early life.
Bacterial community diversity over time is significantly different by geographical
location.

CONCLUSIONS

The microbiome of high-risk infants is associated with geographical location.
Future studies aiming to identify the microbiome disease phenotype need to
carefully consider the geographical origin of subjects.

The Environmental Determinants of Diabetes in the Young (TEDDY) study was
formed to investigate environmental factors that trigger type 1 diabetes in genet-
ically at-risk children (1). The gut microbiome is of interest, as several studies (2–6)
have shown that dysbiosis of the microbiome is associated with type 1 diabetes
autoimmunity. The composition of the fecal microbiome is dependent on numerous
external factors, including geographical location (7–11). This work presents the first
geographical assessment of the gut microbiome in these genetically higher-risk
children.

RESEARCH DESIGN AND METHODS

The TEDDY study prospectively observes children at six clinical centers in Europe
(Finland, Sweden, and Germany) and the U.S. (Colorado, Washington state, and
Georgia/Florida) (1). A total of 1,129 stool samples from 90 children, 15 from
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each study site, were collected monthly
starting, on average, at 151.1 days after
birth (SE 5.5 days after birth) until the
average last sampling at 537 days after
birth (SE 4.5 days after birth). Samples
were collected at home and mailed to a
TEDDY repository within 72 h, with ice
packs during the summermonths (1,12).
Fecal sample storage at room tem-
perature for up to 72 h does not affect
bacterial composition by .10% (13).
Subjects were determined to have the
highest risk HLA class II genotype
(DR4-DQA1*0303-DQB1*0302/DR3-
DQA1*0501-DQB1*0201) by genotyping
of cord blood (1), but neither autoanti-
bodies nor disease developed during
the sample collection period. Clinical
data were collected on gestational
age, delivery mode, sex, and early feed-
ing practices (age at first introduction
to formula, and duration of exclusive and
any breastfeeding), and later on diet (age
at first introduction to oats, gluten, milk
products, cow milk, and solid food) (1).
DNA was isolated from frozen stool

samples as previously described (13).
Extracted DNA was purified using the
PowerClean DNA Kit (MO BIO Laborato-
ries, Inc., Carlsbad, CA). 16S rRNA ampli-
fication, sequencing using a barcoded
Illumina approach, sequence analysis,
read trimming, and taxonomic classifica-
tion were performed as previously de-
scribed (14).
Samples with ,10,000 reads and any

operational taxonomic units with ,50
reads in at least one sample were re-
moved from the data set. This resulted
in an average of 102,147 reads per sam-
ple (SE 1,151 reads per sample), of which
on average 43.9% (SE 0.1%) were suc-
cessfully classified at the genus level.
The relative abundances of bacterial
genera were calculated as the percent-
age of classified reads. Sequences that
did not map to known genera were clus-
tered to each other at 95% similarity. The
original sequences were submitted to
MG-RAST under project identification
#3229. The bacterial diversity of each
sample was determined by calculating
the Shannon diversity index (SDI).
Data analysis was performed using R

statistical software version 3.0.0 (15) or
SAS version 9.3 (SAS Institute Inc., Cary,
NC). Demographic, clinical, and dietary
variables were assessed by site. Cate-
gorical variables were analyzed using
Pearson x2 test or Fisher exact test.

Continuous variables were tested using
the one-way ANOVA or Kruskal-Wallis
test for differences in means. General-
ized estimating equations for longitudi-
nal correlated data were used to assess
the association between geographical
location and bacterial abundance and
diversity adjusting for demographic,
clinical, and dietary variables. Separate
models were examined for each bacte-
rial genus under study. A permutation
test and the F statistic were used to de-
termine whether SDI differed among
the six TEDDY study sites, as previously
described (16). P values ,0.05 were
considered significant.

RESULTS

Sex (P 5 0.0092) and age at first intro-
duction to oats (P 5 0.0042), gluten
(P 5 0.0001), and milk products (P ,
0.0001) were the only clinical character-
istics significantly different by geo-
graphical location. To characterize the
development of the gut microbiome
over time, 16S rRNA sequencing read
values of bacterial genera were grouped
according to age of subject (in months)
at the time of sample collection (Fig. 1A).
Bacteroides was the predominant
genera at all sites (average abundance
22.7%, SE 0.7%). The abundance of
Bifidobacterium (P5 0.0172), Veillonella
(P 5 0.0048), Faecalibacterium (P 5
0.0122), Streptococcus (P 5 0.0003),
and Akkermansia (P 5 0.0196) was sig-
nificantly different by geographical lo-
cation after adjusting for significant
clinical and dietary variables. Although
Bacteroides abundance was not signifi-
cantly different (P 5 0.0530) by site,
Colorado had a significantly higher
abundance than all other sites (P 5
0.0126), except Finland.

The permutation test of the SDI of
bacterial genera identified at each site
showed that all sites differ from each
other across time (Fig. 1B). Further-
more, the difference remained signifi-
cant after adjustment for delivery
mode and age at first introduction to
milk products (P 5 0.0045). Colorado
and Finland had a significantly lower
SDI than all other sites (P 5 0.0258).
Georgia/Florida and Germany had a
more diverse profile, characterized
by a relative abundance of Clostridium,
Bifidobacterium, and Veillonella of
.8.0% each (Fig. 1A). In Sweden and
Washington state, the fecal profile was

dominated by Bifidobacterium until 8
and 10 months of age, respectively,
and the overall abundance was signifi-
cantly higher than in Colorado and Fin-
land (P 5 0.0199).

CONCLUSIONS

This study highlights the great variability
in the composition and diversity of gut
microbiomes among the six TEDDY
study sites. So far, studies examining
the association between the gut micro-
biome and type 1 diabetes autoimmu-
nity have focused on small geographical
regions (2–6). Country- and lifestyle-
specific factors are a major player in
shaping the composition of the gut
community (7–11), but the extent to
which they affect the microbiome of in-
fants at high risk for type 1 diabetes was
previously unknown. Our study is the
first to investigate the fecal microbial
profile of high-risk children across two
continents and multiple countries.

Our data suggest that children at high
risk for type 1 diabetes have study site–
specific patterns of gut colonization
showing intercontinental similarities
but intracontinental differences. Geo-
graphical origin significantly associated
with the diversity of bacterial communi-
ties and the relative abundance of nu-
merous bacterial genera (Fig. 1A). Low
bacterial diversity was characteristic of
subjects from Finland and Colorado.
Previous studies have reported similar
reductions in microbiome diversity in
northern European infants compared
with infants from southern European
countries (Sweden vs. Spain and Finland
vs. Germany, respectively) (9,10). While
Finland has the highest incidence of
type 1 diabetes in children (17), it re-
mains to be seen whether SDI is associ-
ated with disease incidence. Perplexing
differences, not explained by clinical
characteristics, exist between the neigh-
boring countries Sweden and Finland.
Compared with their Swedish neigh-
bors, Finnish subjects had a significantly
higher abundance of Bacteroides (P 5
0.0508) and Veillonella (P 5 0.0160),
and a lower abundance of Bifidobacte-
rium (P 5 0.0199), Akkermansia (P 5
0.0014), and Ruminococcus (P 5
0.0248). The fecal profile of Swedish
subjects was more similar to those
from Washington state (both groups of
subjects were dominated by Bifidobac-
teria at early time points), suggesting a
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more typical colonization pattern of the
infant gut (18).
Clearly, microbiome diversity varies

with geographical location, even in a
population of homogenous HLA class II
genotypes. Geography represents a cul-
mination of underlying environmental
and cultural factors that, on their own,
are difficult to account for. The prime
source of variability in these data re-
mains unknown because significant dif-
ferences in microbiome composition

exist even after adjusting for numerous
early-life and dietary variables. Future
studies must carefully consider the im-
pact of geographical location on the
microbiome of children who are genet-
ically at higher risk for type 1 diabetes
as location may confound analyses of
disease-associated microbiome states.
Furthermore, whether the microbiome
is causative or merely an indicator of
underlying type 1 diabetes etiology,
these microbiome differences suggest a

geographically tailored approach to diag-
nostics or preventative therapies.
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8. Echarri PP, Graciá CM, Berruezo GR, et al.
Assessment of intestinal microbiota of full-
term breast-fed infants from two different geo-
graphical locations. Early Hum Dev 2011;87:
511–513
9. Fallani M, Young D, Scott J, et al.; Other
Members of the INFABIO Team. Intestinal mi-
crobiota of 6-week-old infants across Europe:

geographic influence beyond delivery mode,
breast-feeding, and antibiotics. J Pediatr Gas-
troenterol Nutr 2010;51:77–84
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