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OBJECTIVE

Plasma metabolites that distinguish isolated impaired glucose tolerance (iIGT)
from isolated impaired fasting glucose (iIFG) may be useful biomarkers to predict
IGT, a high-risk state for the development of type 2 diabetes.

RESEARCH DESIGN AND METHODS

Targeted metabolomics with 23 metabolites previously associated with dysglyce-
mia was performed with fasting plasma samples from subjects without diabetes
at time 0 of an oral glucose tolerance test (OGTT) in two observational cohorts:
RISC (Relationship Between Insulin Sensitivity and Cardiovascular Disease) and
DMVhi (Diabetes Mellitus and Vascular Health Initiative). Odds ratios (ORs) for a
one-SD change in the metabolite level were calculated using multiple logistic
regression models controlling for age, sex, and BMI to test for associations with
iIGT or iIFG versus normal. Selective biomarkers of iIGT were further validated in
the Botnia study.

RESULTS

a-Hydroxybutyric acid (a-HB) was most strongly associated with iIGT in RISC (OR
2.54 [95% CI 1.86–3.48], P value 5E-9) and DMVhi (2.75 [1.81–4.19], 4E-5) while
having no significant association with iIFG. In Botnia, a-HB was selectively asso-
ciated with iIGT (2.03 [1.65–2.49], 3E-11) and had no significant association with
iIFG. Linoleoyl-glycerophosphocholine (L-GPC) and oleic acidwere also found to be
selective biomarkers of iIGT. In multivariate IGT prediction models, addition of
a-HB, L-GPC, and oleic acid to age, sex, BMI, and fasting glucose significantly
improved area under the curve in all three cohorts.

CONCLUSIONS

a-HB, L-GPC, and oleic acid were shown to be selective biomarkers of iIGT, in-
dependent of age, sex, BMI, and fasting glucose, in 4,053 subjects without di-
abetes from three European cohorts. These biomarkers can be used in
predictive models to identify subjects with IGT without performing an OGTT.

There are an estimated 86 million people with prediabetes in the U.S. (1), with an
estimated prevalence of isolated impaired glucose tolerance (iIGT) and combination
of impaired fasting glucose (IFG) and IGT of 5.4 and 9.8%, respectively, among U.S.
adults (2). In addition, there are 1.7 million new cases of type 2 diabetes (T2DM)
diagnosed annually in the U.S. (1). Numerous studies have shown that T2DM can be
prevented or delayed with lifestyle and pharmacological intervention in at-risk
subjects, in particular in subjects with IGT (3,4). There is a need, however, to better
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identify at-risk subjects and to focus pre-
vention efforts on thosewhowill benefit
the most. Patients with combined IFG
and IGT are among those at highest
risk to progress to T2DM (5). IFG is di-
agnosed from a fasting plasma sample
(fasting plasma glucose [FPG]), whereas
IGT diagnosis involves the use of the oral
glucose tolerance test (OGTT). The OGTT
is unpopular with primary care physicians
and patients, and its use has been largely
supplanted by the more convenient FPG
and HbA1c measurements as diagnostic
tools (6,7) outside of the setting of gesta-
tional diabetes screening (8). Neverthe-
less, IGT categorization remains a useful
tool for diabetes risk assessment; a simple
means of identifying subjects with IGT
would therefore be valuable.
Targeted and nontargeted metabolo-

mics profiling have expanded our under-
standing of the metabolic changes that
occur during the progression from
normal glucose tolerance (NGT) to
T2DM (9). A number of metabolite bio-
markers that can predict incident diabe-
tes have been identified. These include
the branched-chain amino acids (BCAAs)
(10), aromatic amino acids (10,11), gly-
cine (12), a-hydroxybutyric acid (a-HB)
(13), and linoleoyl-glycerophosphocholine
(L-GPC) (11–13). Within the context of
prediabetes, a number of metabolites
have been shown to be associated with
IGT (12) and IFG (14), but there are no
reports of metabolites associated with
the discrete and nonoverlapping dysgly-
cemic states of isolated IFG (iIFG) and iIGT.
These states havepartly distinctmetabolic
profiles and, presumably, might also ex-
hibit distinct metabolite profiles.
The goal of this work was to identify

circulating metabolites that differ be-
tween iIFG and iIGT and to test whether
selective metabolite biomarkers of iIGT
can be used as biomarkers of IGT inde-
pendent of fasting glucose levels. Tar-
geted metabolomics, using a panel of
23 metabolites previously associated
with dysglycemia and T2DM (15) in sub-
jects without diabetes from the Rela-
tionship Between Insulin Sensitivity
and Cardiovascular Disease (RISC) study
(16), was used to identify candidate bio-
markers of iIGT. Validation of the candi-
date biomarkers was carried out in
another cohort of subjects at risk for
T2DM, the Diabetes Mellitus and Vascular
Health Initiative (DMVhi) (17). Finally, an
additional validation step was performed

with the Botnia (18) cohort for the top
three biomarkers of iIGT.

RESEARCH DESIGN AND METHODS

Study Cohorts
The RISC study is a prospective, obser-
vational cohort study (n = 1,308) whose
rationale and methodology have been
published (19). In short, clinically healthy
participants aged 30–60 years were
recruited at 19 centers in 13 countries
in Europe. A standard 75-g glucose OGTT
was performed at the initial exami-
nation. This was followed, within a
week, by a hyperinsulinemic-euglycemic
clamp (using an insulin infusion rate of
1 mU zmin21 z kg21) for the measurement
of insulin sensitivity (whole-body insulin-
induced glucose uptake [Mwb]). A second
OGTT was performed at the 3-year follow-
up examination. Fasting blood samples
were obtained at each examination, and
anthropometric and metabolic parame-
ters were measured at the time of each
OGTT. Analyses were carried out on
fasting plasma samples from 955 subjects
without diabetes taken at time = 0 of an
OGTT given at the 3-year follow-up. For
the purposes of this study, RISC refers to
the 3-year follow-up samples.

The DMVhi screening study recruited
29,458 policy holders from a large Irish
private health insurance company, Vhi
Healthcare Ireland (17). Between 2009
and 2012, policy holders from two large
urban areas aged 45–75 years, with no
history of diabetes, were screened for
diabetes risk. A subcohort of 700 partic-
ipants at baseline were identified for the
DEXLIFE study (20). This subcohort in-
cluded participants with IFG (13%)
and/or IGT (7%) at baseline, along with
normoglycemic participants with an el-
evated diabetes risk based on FINDRISC
(21) at baseline (80%). Analyses were
carried out on fasting plasma samples
from 668 subjects without diabetes
taken at time = 0 of an OGTT given at
the 3-year follow-up. For the purposes
of this study, DMVhi refers to the 3-year
follow-up samples.

The Botnia Study is a family-based,
observational study started in 1990 on
the west coast of Finland with a goal of
identifying diabetes susceptibility genes
(18). The prospective part included
2,152 first-degree relatives of patients
with T2DM and 528 age- and weight-
matched spouses without a family his-
tory of T2DM. A standard 75-g, 2-h OGTT

was performed at the initial examination
and repeated at 2- to 3-year intervals.
Fasted blood samples were obtained at
each examination, and anthropometric
and metabolic parameters were mea-
sured at the time of each OGTT. During a
median 9.5 years of follow-up, 151 sub-
jects developed T2DM. Analyses were
carried out on fasting plasma samples
from 2,430 subjects without diabetes
taken at time = 0 of an OGTT given at
study baseline.

The subjects without diabetes in RISC
and Botnia evaluated here do not meet
the FPG or OGTT criteria for T2DM (HbA1c
was not measured) as per the current
AmericanDiabetes Association guidelines.
The subjects in DMVhi did not meet FPG,
OGTT, or HbA1c criteria for T2DM.

Ethics committee approval was ob-
tained at each recruiting center for each
cohort. Subjects provided written in-
formed consent.

Quantitative (Targeted) Assays
(23-Metabolite Panel Used in RISC
and DMVhi)
For absolute quantitation, metabolites
were analyzed by isotope dilution ultra-
high-performance liquid chromatography
(LC) coupled to tandemmass spectrometry
(MS/MS) assays. In brief, 50 mL of EDTA
plasma was spiked with stable labeled in-
ternal standards and subsequently sub-
jected to protein precipitation by mixing
with 200 mL of 1% formic acid in metha-
nol. After centrifugation, aliquots of
clear supernatant were injected onto
an Agilent 1290/AB Sciex QTrap 5500
mass spectrometer LC-MS/MS system
equipped with a turbo ion-spray source
using three different chromatographic
systems (mobile phase/column combi-
nations). a-HB, b-hydroxybutyric acid
(b-HB), 3-hydroxyisobutyric acid (3-HIB),
3-methyl-2-oxobutyric acid (3-MOB),
3-methyl-2-oxopentanoic acid (3-MOP),
4-methyl-2-oxobutyric acid (4-MOP),
L-GPC, and oleic acid were eluted
with a gradient (mobile phase A: 0.01%
formic acid in water; mobile phase B:
acetonitrile/methanol, 1:1) on a Waters
Acquity C-18 BEH column (2.13 100 mm,
1.7-mmparticle size) and detected in neg-
ative mode. 2-Aminoadipic acid (2-AAA),
creatine, glycine, hydroxyisovaleroyl car-
nitine, isoleucine, leucine, phenylalanine,
serine, trigonelline, tyrosine, and vitamin
B5 were eluted with a gradient (mobile
phase A: 0.05% perfluoropentanoic acid
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in water; mobile phase B: 0.05% perfluor-
opentanoic acid inacetonitrile) onaWaters
Acquity C-18 BEH column (2.13 100 mm,
1.7-mm particle size) and detected in
positive mode. A 60-mL aliquot of the clear
supernatant was diluted with 60 mL of
water and injected onto the same col-
umn type as above. X-12063 was eluted
with a gradient (mobile phase A: 6.5
mmol/L ammonium bicarbonate in water;
mobile phase B: 6.5 mmol/L ammonium
bicarbonate inmethanol/water, 19:1) and
detected in negative mode. To an addi-
tional 60-mL aliquot of clear supernatant,
60 mL of a 2,4-dinitrophenylhydrazine
solution (1% 2,4-dinitrophenylhydrazine
in acetonitrile/acetic acid, 85:15) was
added. An aliquot of the reaction mix-
ture was injected onto a Waters Acquity/
ThermoQuantumUltra LC-MS/MS system
equipped with a heated electrospray
ionization source. The 2,4-dinitrohydrazone
derivatives of a-ketoglutaric acid and
a-ketobutyric acid (a-KB) were eluted
with a gradient (mobile phase A: water/
ammonium bicarbonate, 500:1; mobile
phase B: acetonitrile/methanol, 1:1) on a
Waters Acquity C-18 BEH column (2.1 3
50 mm, 1.7-mm particle size) and de-
tected in negative mode.
Quantitation was performed based

on the area ratios of analyte and internal
standard peaks using a weighted linear
least squares regression analysis gener-
ated from fortified calibration standards
in water, prepared immediately prior to
each run. Stable isotope-labeled com-
pounds (a-HB-d3, b-HB-d4 [used for both
b-HB and 3-HIB], 2-AAA-d3, 3-MOB-d7,
4-MOP-d3 [used for both 3-MOP and
4-MOP], a-KB-13C4, a-ketoglutaric acid-
13C4-

15N2, creatine-d3, glycine-
13C2-

15N,
hydroxyisovaleroyl carnitine-d3, isoleucine-
13C6, leucine-d3, L-GPC-d9, oleic acid-

13C18,
phenylalanine-d8, serine-d3, trigonelline-d3,
tyrosine-d4, valine-

13C5-
15N, vitamin

B5-13C3-
15N, and dehydroepiandrosterone

sulfate-d6 [for X-12063]) were used as in-
ternal standards.
Between-run precision was evaluated

by analyzing 12 samples of a pooled
plasma lot per run at endogenous analyte
levels over three separate runs. Between-
run% coefficients of variation for theme-
tabolites are as follows: a-HB (5.1), b-HB
(4.9), 2-AAA (9.0), 3-HIB (5.3), 3-MOB
(7.2), 3-MOP (11.5), 4-MOP (5.7), a-KB
(7.0), a-ketoglutaric acid (5.6), creatine
(5.0), glycine (5.8), hydroxyisovaleroyl
carnitine (5.8), isoleucine (7.1), leucine

(5.1), L-GPC (5.0), oleic acid (6.3), phenyl-
alanine (5.1), serine (5.0), trigonelline
(5.0), tyrosine (5.1), valine (4.7), vitamin
B5 (8.6), and X-12063 (6.3).

Quantitative measurements of a-HB,
L-GPC, and oleic acid in Botnia were
made as described previously (13).

Statistical Analysis
Metabolite datawere ranknormalizedus-
ing the GenABEL package in R to create a
normal distribution. Disease states were
classified as normal (NGTandnormal fast-
ing glucose, FPG ,100 and 2-h plasma
glucose [2hPG] ,140 mg/dL), iIFG
(100# FPG,126 and 2hPG,140 mg/dL),
iIGT (FPG ,100 and 140# 2hPG ,200
mg/dL), and combined IFG and IGT
(100# FPG ,126 and 140# 2hPG
,200 mg/dL). The associations of me-
tabolites for normal versus iIFG, iIGT, or
combined IFG and IGT were made using
multiple logistic regression models con-
trolling for age, sex, and BMI. Odds ratios
(ORs) for a one-SD change in the metab-
olite level, 95% CIs, and P values (ad-
justed with a false discovery rate of
0.1) were calculated for eachmetabolite.
ORs were directly compared using their
CIs and likelihood ratio tests.

Multiple logistic regression analyses
were generated in R (22) to compare
the performance of clinical variables
and metabolites for their ability to dis-
tinguish IGT as a categorical variable in
mixed NGT and IGT populations. The
performance of each model was as-
sessed as the c statistic (the area under
the receiver operating characteristic
curve [AUC]) generated using the pack-
age pROC (23). In addition, within each
cohort, the performance of the models
was compared with the age/sex/BMI/
FPG model by implementing the non-
parametric method of DeLong et al.
(24). JMP 9.0 (SAS Institute, Cary, NC)
was used for additional statistical cal-
culations and P values#0.05 were con-
sidered statistically significant. It is
important to note that the P values pre-
sented are not corrected for multiple
comparisons, and although the vast
majority of results would hold to even
conservative Bonferroni corrections, the
P values should be interpreted with this
in mind.

RESULTS

Quantitative measurements were made
for 22 metabolites in fasting plasma

samples taken just prior to an OGTT
from the RISC and DMVhi cohorts. In
addition, relative levels of the unnamed
metabolite X-12063 (25) weremeasured
in these two cohorts. X-12063 has a
known mass spectrometric signature
but its chemical structure has not yet
been elucidated. The demographic char-
acteristics of the RISC cohort are shown
in Table 1 and those of the DMVhi and
Botnia cohorts in Supplementary Table
1, categorized as normal, iIGT, iIFG, and
combined IFG and IGT. The 23 metabo-
lites measured in this study are listed
along with their abbreviations and clas-
sifications in Table 2, which also tallies
their median levels in the RISC study for
each glycemic category. All 23 metabo-
lites, except for one (a-ketoglutaric acid
[a-KG]), were found to be significantly
different from normal in at least one
prediabetic category in RISC. Similar re-
sults (data not shown) were seen in the
DMVhi cohort, which also showed a sig-
nificant change for a-KG in all three dys-
glycemic states. Most of themetabolites
tended to be elevated in dysglycemia
versus normal, with the exception of gly-
cine, serine, trigonelline, and L-GPC,
which had decreased levels.

Odds ratios, adjusted for age, sex, and
BMI, were calculated for a one-SD change
in metabolite concentration for each pre-
diabetic state versus normal. The most
significant and cross-cohort–reproducible
ORs are shown in Table 3 (a complete
listing is found in Supplementary Tables
2 and 3). By P value rank, the top metab-
olites associated with iIGT in RISC are
a-HB, L-GPC, X-12063, oleic acid, b-HB,
and glycine. None of these have a signif-
icant association with iIFG except L-GPC
(P = 0.03). In the case of iIFG, the top
metabolites are a-KB, 3-MOB, 2-AAA,
4-MOP, and 3-HIB. Combined IFG and
IGT–associated metabolites are a-KB,
a-HB, 3-HIB, 2-AAA, 3-MOB, and L-GPC.
The top metabolites associated with iIGT
in DMVhi area-HB,a-KB,a-KG, oleic acid,
trigonelline, and L-GPC. L-GPC and trigo-
nelline do not show a significant associa-
tionwith iIFG, whereasa-KB anda-KG do,
and a-HB is marginally significant (P =
0.05). The top metabolites for iIFG are
4-MOP, X-12063, a-KG, 3-MOB, and
a-KB. The top metabolites for combined
IFG and IGT are a-KB, a-KG, a-HB, 3-HIB,
oleic acid, and L-GPC. Themetabolites that
were significantly associated with iIGT in
both cohorts are a-HB, a-KB, oleic acid,
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L-GPC, and serine. The metabolites most
strongly associated with iIGT versus iIFG
in both cohorts are a-HB, oleic acid,
L-GPC, and serine (which is not associ-
ated with combined IFG and IGT). The
metabolites most strongly associated
with iIFG versus iIGT in both cohorts
are 3-MOB and 4-MOP. a-KB is signif-
icantly associated with iIGT, iIFG, and
combined IFG and IGT in both cohorts.
a-HB, L-GPC, and oleic acid under-

went additional evaluation as potential
biomarkers of IGT in the Botnia cohort.
Quantitative measurements of these
three metabolites were made, and ORs
for them, as calculated before, are
shown in Table 3. a-HB and oleic acid
are strongly associated with both iIGT
and combined IFG and IGT (P values
,1E-9) and have no significant associ-
ation with iIFG. L-GPC is strongly associated
with iIGT (P = 5.8E-11) and combined IFG
and IGT (P = 0.002) but is also associated
with iIFG (P = 0.002). L-GPC, however, has
ORs,1 in iIGT and combined IFG and IGT
and an OR.1 in iIFG.
Likelihood ratio tests indicated that

there were significant differences in
the effect size of the associations. The
OR for a-HB in DMVhi for iIGT (2.75) was
significantly different (P , 0.033) from
iIFG (1.31); for L-GPC in RISC, the OR for
iIGT (0.48) was significantly different
(P , 0.045) from iIFG (0.82). The OR
for L-GPC in Botnia for iIGT (0.48) versus
iIFG (1.17) was highly significant, as

expected from the reverse direction of
the association (P , 0.0001). For 3-MOB
in RISC, the OR for iIGT (1.49) versus iIFG
(1.45) was marginally significant (P ,
0.05). Finally, for oleic acid in DMVhi,
the OR for iIGT (1.83) versus iIFG (1.36)
was significantly different (P , 0.03).

IGT Prediction Models
The AUCs for multivariate models for
the prediction of IGT as a categorical
variable in the subjects without diabetes
in RISC, DMVhi, and Botnia are shown in
Table 4. In each cohort, themodel based
on age, sex, BMI, and FPG is compared
with themodel containing the same var-
iables plus a-HB, L-GPC, and oleic acid.
There are significant increases in AUC
upon addition of the three metabolites
to the age, sex, BMI, and FPG model in
each cohort (RISC, +0.10; DMVhi, +0.05;
Botnia, +0.06). Each metabolite makes a
significant contribution to the model in
each cohort except for oleic acid in
DMVhi. The models were also evaluated
for their ability to predict combination
IFG and IGT within the subset of subjects
with IFG in each cohort (Table 4). Again
the three metabolites added signifi-
cantly to the AUCs (RISC, +0.09; DMVhi,
+0.08; Botnia, +0.05), although the AUCs
were, overall, lower in the subjects with
IFG due to poorer performance of the
age/sex/BMI/FPG component (espe-
cially in the DMVhi cohort). Finally, ad-
dition of family history to the RISC study

models of age, sex, BMI, and FPG or to
themodel containing the same variables
plus a-HB, L-GPC, and oleic acid did not
change the AUCs.

CONCLUSIONS

This study identified a-HB, L-GPC, and
oleic acid as selective and reproducible
metabolite biomarkers of iIGT, whereas
3-MOB and 4-MOP were found to be
selective and reproducible metabolite
biomarkers of iIFG. Subjects with com-
bined IFG and IGT were found to have
metabolite profiles reflecting aspects of
both iIFG and iIGT. a-KB was identified
as a general marker of IFG and IGT.

In general, iIFG and iIGT are both
characterized by a stronger family his-
tory of diabetes; higher BMI, systolic
blood pressure, and triglycerides; and
lower HDL levels with respect to NGT,
but these anthropometric and meta-
bolic characteristics do not clearly distin-
guish between the prediabetic states.
Insulin resistance, as measured by the
clamp technique, is worse in iIGT than
iIFG (Mwb = normal [n = 922] 7.54 mg z
min21 z kg21, iIFG [n = 173] 6.74, and iIGT
[n = 77] 4.78 [P , 0.001 vs. normal
and iIFG], unpublished baseline data from
RISC)as is alsooral glucose insulin sensitivity
(anOGTT-based estimate ofMwb) (Table 1).
In addition, inRISC,b-cell glucose sensitivity
is also significantly lower in iIGT (and com-
bined IFG and IGT) than in iIFG or normal
subjects. In contrast, HOMA of insulin

Table 1—RISC: anthropometric and metabolic characteristics by glycemic status

Normal iIGT iIFG IFG and IGT

n 623 56 220 56

Women (%) 60 57 38§,| 55

Age (years) 46 6 8 50 6 8* 50 6 9† 51 6 9‡

Familial diabetes (%) 24 32 35§ 46§

BMI (kg/m2) 25.0 6 4 26.0 6 4* 27.0 6 4† 28.0 6 5†

Systolic blood pressure (mmHg) 119 6 15 123 6 11* 124 6 15† 122 6 13

HDL cholesterol (mg/dL) 58.2 6 16 52.4 6 14* 54.9 6 15* 51.9 6 16*

Triglycerides (mg/dL) 77 (47) 83 (79)* 93 (57)† 99 (63)†

FFA (mmol/L) 0.54 (0.29) 0.71 (0.28)† 0.55 (0.23)¶ 0.72 (0.30)†

Fasting insulin (mU/L) 4.7 (3.3) 5.2 (4.5) 6.3 (4.2)† 6.7 (6.2)†

2-h glucose (mg/dL) 96 6 21 156 6 14† 108 6 20†,¶ 159 6 15†

Fasting glucose (mg/dL) 88 6 9 92 6 6‡ 106 6 5†,¶ 108 6 5†

Glucose sensitivity (pmol z min21 z m22 z mM21) 146 6 99 81 6 28† 121 6 59*,¶ 85 6 41†

Oral glucose insulin sensitivity (mmol z min21 z kgFFM
21) 12.2 6 2.6 8.87 6 1.8† 9.87 6 1.8†,# 8.06 6 1.6†

Quantose IR score MQ (29) 7.26 6 2.0 5.86 6 1.8† 6.25 6 1.6† 4.92 6 1.2†

HOMA-IR (mU/L z mg/dL) 1.2 6 0.7 1.5 6 1.0† 1.9 6 1.0‡,¶ 2.5 6 1.8†

Data are mean 6 SD or median (interquartile range). P values calculated in JMP 9.0. Normal = NFG and NGT. IR, insulin resistance. *P , 0.05 vs.
normal. †P, 0.0001 by Wilcoxon rank sum test. ‡P, 0.001. §P, 0.05 by x 2 test. #iIFG vs. iIGT: P, 0.05. ¶P, 0.0001 by Wilcoxon rank sum test.
|P , 0.05 by x 2 test.
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resistance (HOMA-IR) is significantly higher
in iIFG than iIGT in RISC andDMVhi (but not
in Botnia). This finding has been reported
previously in the Metabolic Syndrome in
Men (METSIM) study (26). Overall, these
data confirm greater peripheral insulin re-
sistance in IGT and greater hepatic insulin
resistance in IFG (27). In terms of T2DM
predictivity, in a prospective, population-
based study, iIFG (by the American Diabe-
tes Association definition) had a similar
relative risk of progression (;3.0) as
iIGT, but a 2.5-fold lower population-
attributable risk on account of its lower
prevalence in the population. IGT with
any fasting glucose, on the other hand,
had a sixfold increased relative risk of
progression (5).
Several metabolites associated with

IFG, controlled for age and BMI, were
reported previously from nontargeted
metabolomics using semiquantitative
data in the TwinsUK study (14), in which,
however, glucose tolerance was not as-
sessed. These metabolites included sev-
eral that were quantitated in this study:
three branched-chain a-keto acids
(BCKAs) (3-MOB, 3-MOP, and 4-MOP),
two BCAAs (isoleucine and leucine),

and a-HB. Specifically, 3-MOP was re-
ported to be the strongest predictor of
IFG; this finding was replicated in a sec-
ond cohort (KORA F4). Of these IFG
markers, 3-MOB and 4-MOP have the
strongest associations with iIFG in the
current study, whereas all are associ-
ated with combined IFG and IGT. The
a-HB association with IFG in TwinsUK
may be driven by subjects with com-
bined IFG and IGT, as is seen here.

A second study (the KORA cohort) us-
ing targeted metabolomic profiling with
188 metabolites reported 3 metabolites
associated with IGT: acetylcarnitine,
L-GPC, and glycine; the latter 2 were
replicated in the EPIC cohort (12). Our
data replicate the finding with L-GPC
and glycine (RISC only), whereas acetyl-
carnitine was not measured. A third
study found a-HB to be a predictive bio-
marker of the 1-h plasma glucose value
from the OGTT in a cohort of subjects at
increased risk of diabetes (28). Finally,
we recently reported that a-HB is corre-
lated with 2hPG and is a predictive bio-
marker of IGT in RISC and DMVhi (15).

We previously reported that a-HB,
L-GPC, and oleic acid are biomarkers of

insulin sensitivity as measured by the
hyperinsulinemic-euglycemic clamp in
the RISC study at baseline (25,29). In a
subsequent report, we showed that
a-HB and L-GPC were predictors of inci-
dent dysglycemia in RISC and of incident
T2DM in Botnia (13). These two metab-
olites had similar predictive power for
dysglycemia as 2hPG when included in
multivariate models comprised of age,
sex, BMI, FPG, and family history of di-
abetes. The current findings close the
loop by showing that these molecules
are strongly associated with IGT, and in-
dependently predict its development
from NGT (Botnia), precisely because of
their relation to insulin resistance.

a-HB is a shunt metabolite with no
known metabolism other than its pro-
duction from and conversion back to
a-KB mediated by lactate dehydroge-
nase (LDH) (30) (Supplementary Fig. 1).
a-KB is reported to be a substrate for
two key catabolic a-ketoacid dehydro-
genase complexes, pyruvate dehydroge-
nase (PD) and branched-chain a-keto
acid dehydrogenase (BCKD), by virtue of
its structural analogy with the primary
substrates for each complex, pyruvate,

Table 2—Metabolite levels by glycemic status: RISC

Metabolite Class Normal iIGT iIFG IFG and IGT

a-HB Methionine/threonine metabolism 3.58 (1.6) 4.90 (2.4)† 3.88 (1.6)‡,§ 4.72 (1.7)†,¶

a-KB Methionine/threonine metabolism 0.343 (0.24) 0.442 (0.42)‡ 0.448 (0.21)† 0.530 (0.27)†,#,*

a-KG Krebs cycle intermediate 0.964 (0.32) 0.994 (0.50) 0.954 (0.27) 1.07 (0.32)#

b-HB Ketone body 4.13 (5.1) 5.59 (9.5)‡ 3.86 (3.9)| 5.31 (5.7)‡,#

2-AAA Lysine metabolism 0.0754 (0.037) 0.0910 (0.040)‡ 0.0894 (0.036)† 0.106 (0.047)†,#

3-HIB Valine metabolism 1.21 (0.47) 1.40 (0.55)‡ 1.32 (0.45)‡ 1.47 (0.62)†,#

3-MOB Valine metabolism 1.59 (0.46) 1.70 (0.72)‡ 1.77 (0.39)† 1.83 (0.46)†,*

3-MOP Isoleucine metabolism 2.43 (0.94) 2.82 (1.4)‡ 2.66 (1.2)‡ 2.63 (0.87)‡

4-MOP Leucine metabolism 3.75 (1.3) 4.07 (1.8) 4.26 (1.2)† 3.99 (1.5)‡

Creatine Creatine metabolism 3.60 (2.9) 4.20 (4.8)‡ 3.78 (2.6)| 4.98 (3.4)#

Glycine Amino acid 18.2 (6.8) 15.8 (5.3)‡ 17.3 (6.1)| 16.1 (4.7)‡

Hydroxyisovaleroyl carnitine Leucine metabolism 0.0254 (0.012) 0.0279 (0.013) 0.0277 (0.011)‡ 0.0271 (0.010)

Isoleucine BCAA 6.74 (1.9) 6.95 (2.0) 7.38 (2.1)† 7.22 (1.9)‡

Leucine BCAA 13.5 (3.6) 13.8 (3.4) 14.6 (3.5)‡ 14.8 (3.6)‡

L-GPC Lyso-phosphocholine 15.9 (7.3) 11.9 (6.2)† 14.9 (6.6)‡,| 11.8 (5.0)†,¶

Oleic acid Fatty acid 48.5 (27) 60.8 (31)† 48.8 (25)§ 57.7 (28)†,¶

Phenylalanine Aromatic amino acid 8.49 (1.3) 8.43 (1.4) 8.83 (1.4)‡,| 9.15 (1.9)‡,*

Serine Amino acid 10.5 (2.6) 9.37 (3.2)‡ 10.2 (2.4)| 10.3 (2.9)

Trigonelline Nicotinate metabolism 0.0899 (0.16) 0.0676 (0.095) 0.101 (0.14)| 0.094 (0.16)

Tyrosine Aromatic amino acid 9.73 (2.5) 9.51 (2.9) 10.4 (2.3)†,| 10.8 (2.7)†,*

Valine BCAA 23.3 (5.9) 23.9 (5.6) 25.0 (5.1)† 26.2 (5.2)‡,*

Vitamin B5 (pantothenic acid) Vitamin; precursor to CoA 0.0330 (0.013) 0.0380 (0.018)‡ 0.0338 (0.014) 0.0370 (0.017)‡,#

X-12063 Unknown 0.197 (0.20) 0.319 (0.32)† 0.266 (0.22)† 0.331 (0.34)†,#

All values in mg/L except X-12063, which equals area ratio. Data are median (interquartile range). ‡P, 0.05, vs. normal. †P, 0.0001. |iIFG vs. iIGT:
P , 0.05. §P , 0.0001. #iIFG vs. IFG and IGT: P , 0.05. ¶P , 0.0001. *iIGT vs. IFG and IGT: P , 0.05 by the Wilcoxon rank sum test.
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and the trio of 3-MOB, 3-MOP, and
4-MOP, respectively (31). PD is important
inmetabolic flexibility and is a key control
point for determining the use of glucose
or fatty acids for oxidative phosphoryla-
tion in a given tissue (32). PD activity is
decreased in T2DM (33) and may be de-
creased in IGT as well. The increases in
a-HB and a-KB seen in IGT could be a
reflection of decreased PD activity and
decreased flux of a-KB through it. In sup-
port of this concept are the increased
levels of free fatty acids (FFAs) seen in
this study in both IGT and iIGT, as they
are known to decrease PD activity
through their oxidation to acetyl-CoA, a
known regulator of PD (33,34). This pos-
sibility is supported by the raised levels
seen here in IGT of the ketone body and
biomarker of fatty acid oxidation, b-HB.
In RISC, a-HB levels are correlated with
both FFAs (r = 0.31, P , 0.0001) and
b-HB (r = 0.44, P , 0.0001). In addition,
a-HB levels are known to be elevated

with extended fasting (35), another state
characterized by decreased PD activity
(33). a-KB levels could also be a function
of the rate of methionine and/or threo-
nine catabolism. Indeed, oxidative stress
could increase methionine catabolism
via cystathionine in order to produce
cysteine for glutathione synthesis while
also producing a-KB (36).

BCKD carries out a key step in BCAA
catabolism. The increased levels of BCKD
substrates (particularly 3-MOB, 4-MOP,
and a-KB) seen in iIFG may reflect de-
creased BCKD activity in this glycemic
state as has been reported in T2DM
(37). The finding that a-HB tracks with
a-KB in iIGT but not in iIFG suggests
some subtle differences in their intercon-
version ratio in these two glycemic states.
It would only take a small change to in-
crease a-KB without increasing a-HB, as
the ratio favors a-HB (typically ;10:1).

PD and BCKD are closely related en-
zyme complexes (38) present in a number

of metabolically active tissues (e.g., mus-
cle, liver, and adipose); they are regulated
by a number of common factors, includ-
ing insulin. It is possible that they both
play a role in affecting plasma a-HB and
a-KB levels, although their relative activi-
ties and tissue specificities may well differ
in iIFG and iIGT.

The BCAAs have an extensive litera-
ture of being associated with obesity, in-
sulin resistance, T2DM, and incident T2DM
(39). In this study, however, BCAAs were
onlymodestly associatedwith iIFG (DMVhi
only) and with combined IFG and IGT and
were not associated with iIGT. Of the 23
metabolites in our profiling panel, the
BCAAs are among the highest correlated
with HOMA-IR, insulin levels, and BMI;
similar correlations have been noted in
the Framingham Offspring Study (10). In
the multivariate predictive models of
RISC and DMVhi data, insulin and BMI as
covariates very likely confound the link
between BCAAs and glycemic category.

The strength of this study relies on
the 4,053 subjects from three cohorts
evaluated and the reproducible findings
that a-HB, L-GPC, and oleic acid are as-
sociated with IGT. A limitation of the
study is its lack of diversity, as all three
cohorts evaluated are European Cauca-
sians, and further studies in diverse pop-
ulations are necessary to understand
the breadth of the metabolite finding
to dysglycemic states. In addition, all three
cohorts are subsets of larger cohorts and
it is possible that some selective bias has

Table 4—AUCs for prediction of IGT and IFG and IGT in RISC, DMVhi, and Botnia

RISC DMVhi Botnia

Model (all cohort subjects without diabetes)
n (% IGT) 955 (11.7%) 668 (11.8%) 2,430 (15.9%)
Age/sex/BMI/FPG 0.716 0.814 0.722
Age/sex/BMI/FPG/a-HB/L-GPC/oleic acid 0.813* 0.863† 0.786‡

Model (IFG subject subcohorts only)
n (% IFG and IGT) 276 (20.3%) 152 (31.6%) 1,197 (21.6%)
Age/sex/BMI/FPG 0.692 0.681 0.718
Age/sex/BMI/FPG/a-HB/L-GPC/oleic acid 0.780§ 0.760| 0.770¶

*P value vs. age/sex/BMI/FPG: 1.3E-5. †9.9E-4. ‡1.1E-10. §1E-2. |3E-2. ¶1E-6.

Table 3—Key metabolite data by cohort: ORs of iIGT, iIFG, or IFG and IGT versus normal controlled for age, sex, and BMI

iIGT iIFG IFG and IGT

Study Metabolite OR (95% CI) Adjusted P OR (95% CI) Adjusted P OR (95% CI) Adjusted P

RISC a-HB 2.54 (1.86–3.48) 5.1E-9 0.99 (0.83–1.18) 0.09 2.28 (1.66–3.14) 4.1E-7

L-GPC 0.48 (0.35–0.66) 4.6E-6 0.82 (0.68–0.98) 0.03 0.46 (0.33–0.64) 3.5E-6

Oleic acid 1.87 (1.38–2.55) 6.4E-5 1.01 (0.85–1.21) 0.9 2.07 (1.49–2.87) 1.3E-5

Serine 0.62 (0.46–0.82) 0.0009 1.03 (0.87–1.22) 0.7 0.93 (0.69–1.24) 0.6

a-KB 1.46 (1.10–1.95) 0.01 1.50 (1.26–1.78) 4.1E-6 2.39 (1.75–3.25) 3.0E-8

3-MOB 1.49 (1.11–2.01) 0.009 1.45 (1.22–1.74) 4.0E-5 2.15 (1.57–2.94) 1.9E-6

4-MOP 1.39 (1.00–1.94) 0.06 1.36 (1.11–1.65) 0.003 2.01 (1.41–2.85) 9.7E-5

DMVhi a-HB 2.75 (1.81–4.19) 3.6E-5 1.31 (1.04–1.66) 0.05 2.36 (1.66–3.35) 3.0E-5

L-GPC 0.55 (0.36–0.84) 0.03 0.97 (0.76–1.24) 0.86 0.45 (0.32–0.64) 1.0E-4

Oleic acid 1.83 (1.23–2.71) 0.01 1.36 (1.08–1.70) 0.03 1.91 (1.37–2.66) 1.0E-4

Serine 0.63 (0.43–0.93) 0.04 1.06 (0.85–1.33) 0.67 0.81 (0.59–1.13) 0.28

a-KB 1.93 (1.29–2.89) 0.01 1.52 (1.21–1.93) 0.01 2.58 (1.82–3.66) ,1.0E-5

3-MOB 1.25 (0.81–1.91) 0.4 1.38 (1.07–1.77) 0.03 1.69 (1.17–2.43) 0.02

4-MOP 1.11 (0.71–1.70) 0.71 1.65 (1.26–2.17) 0.001 1.90 (1.30–2.77) 0.004

Botnia a-HB 2.03 (1.65–2.49) 2.5E-11 1.01 (0.92–1.11) 0.8 1.78 (1.53–2.08) 6.8E-13

L-GPC 0.49 (0.40–0.61) 5.8E-11 1.17 (1.06–1.29) 0.002 0.77 (0.66–0.90) 0.002

Oleic acid 1.90 (1.55–2.33) 9.6E-10 1.03 (0.94–1.13) 0.6 1.69 (1.45–1.98) 5.7E-11
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been introduced. On the other hand, the
reproducible findings across three cohorts
may serve to mitigate this possibility.
In the RISC study, which is the most

representative of European Caucasians
of the three cohorts reported here, cut
points can be calculated fora-HB, L-GPC,
and oleic acid to achieve 80% sensitiv-
ity for the identification of IGT subjects.
These cut points (and % specificity) are
as follows: a-HB ($3.84 mg/L, 55%),
L-GPC (,16 mg/L, 48%), and oleic acid
(.47 mg/L, 47%). We recently reported a
novel test for IGT (15) based on a multi-
metabolite model that includes a-HB,
L-GPC, oleic acid, and FPG that was de-
veloped in subjects from the RISC 3-year
follow-up and validated in subjects from
the DMVhi 3-year follow-up. In DMVhi,
using the top tertile cutoff of the test
scores, the sensitivity and specificity of
the test were 78 and 73%, respectively,
for the identification of IGT subjects.
In summary, the current results de-

fine circulating metabolite patterns
that distinguish iIFG from iIGT above
and beyond anthropometric and meta-
bolic differences. They also validate the
23-metabolite panel as a tool to profile
and stratify prediabetic states. These
findings can be used to generate new
predictive models for the identification
of subjects with, or at risk for, IGT with-
out performing an OGTT.
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