The American Diabetes Association (ADA) “Standards of Medical Care in Diabetes” includes the ADA’s current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee (https://doi.org/10.2337/dc21-SPPC), are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA’s clinical practice recommendations, please refer to the Standards of Care Introduction (https://doi.org/10.2337/dc21-SINT). Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.

The management of diabetes in children and adolescents cannot simply be derived from care routinely provided to adults with diabetes. The epidemiology, pathophysiology, developmental considerations, and response to therapy in pediatric-onset diabetes are different from adult diabetes. There are also differences in recommended care for children and adolescents with type 1 diabetes, type 2 diabetes, and other forms of pediatric diabetes. This section first addresses care for children and adolescents with type 1 diabetes and next addresses care for children and adolescents with type 2 diabetes. Monogenic diabetes (neonatal diabetes and maturity-onset diabetes in the young [MODY]) and cystic fibrosis–related diabetes, which often present in youth, are discussed in Section 2 “Classification and Diagnosis of Diabetes” (https://doi.org/10.2337/dc21-S002). Lastly, guidance is provided in this section on transition of care from pediatric to adult providers to ensure that the continuum of care is appropriate as an adolescent with diabetes becomes an adult. Due to the nature of clinical pediatric research, the recommendations for children and adolescents with diabetes are less likely to be based on clinical trial evidence. However, expert opinion and a review of available and relevant experimental data are summarized in the American Diabetes Association (ADA) position statements “Type 1 Diabetes in Children and Adolescents” (1) and “Evaluation and Management of Youth-Onset Type 2 Diabetes” (2). The ADA consensus report “Youth-Onset Type 2 Diabetes Consensus Report: Current Status, Challenges, and Priorities” (3) characterizes type 2 diabetes in children and evaluates treatment options but also discusses knowledge gaps and recruitment challenges in clinical and translational research in youth-onset type 2 diabetes.

TYPE 1 DIABETES

Type 1 diabetes is the most common form of diabetes in youth (4), although data suggest that it may account for a large proportion of cases diagnosed in adult life (5).
The provider must consider the unique aspects of care and management of children and adolescents with type 1 diabetes, such as changes in insulin sensitivity related to physical growth and sexual maturation, ability to provide self-care, supervision in the childcare and school environment, neurological vulnerability to hypoglycemia and hyperglycemia in young children, and possible adverse neurocognitive effects of diabetic ketoacidosis (DKA) (6,7). Attention to family dynamics, developmental stages, and physiologic differences related to sexual maturity is essential in developing and implementing an optimal diabetes treatment plan (8).

A multidisciplinary team of specialists trained in pediatric diabetes management and sensitive to the challenges of children and adolescents with type 1 diabetes and their families should provide care for this population. It is essential that diabetes self-management education and support, medical nutrition therapy, and psychosocial support be provided at diagnosis and regularly thereafter in a developmentally appropriate format that builds on prior knowledge by individuals experienced with the biological, educational, nutritional, behavioral, and emotional needs of the growing child and family. The appropriate balance between adult supervision and independent self-care should be defined at the first interaction and reevaluated at subsequent visits, with the expectation that it will evolve as the adolescent gradually becomes an emerging adult.

Dietary management should be individualized: family habits, food preferences, religious or cultural needs, finances, schedules, physical activity, and the patient’s and family’s abilities in numeracy, literacy, and self-management should be considered. Visits with a registered dietician nutritionist is recommended to assess caloric and nutrition intake in relation to weight status and cardiovascular disease risk factors and to inform macronutrient choices. E

Exercise positively impacts metabolic and psychological health in children with type 1 diabetes (13). While it affects insulin sensitivity, physical fitness, strength building, weight management, social interaction, mood, self-esteem building, and creation of healthful habits for adulthood, it also has the potential to cause both hypoglycemia and hyperglycemia. See below for strategies to mitigate hypoglycemia risk and minimize hyperglycemia with exercise. For an in-depth discussion, see recently published reviews and guidelines (14–16).

The provider must consider the unique aspects of care and management of children and adolescents with type 1 diabetes, such as changes in insulin sensitivity related to physical growth and sexual maturation, ability to provide self-care, supervision in the childcare and school environment, neurological vulnerability to hypoglycemia and hyperglycemia in young children, and possible adverse neurocognitive effects of diabetic ketoacidosis (DKA) (6,7). Attention to family dynamics, developmental stages, and physiologic differences related to sexual maturity is essential in developing and implementing an optimal diabetes treatment plan (8).

A multidisciplinary team of specialists trained in pediatric diabetes management and sensitive to the challenges of children and adolescents with type 1 diabetes and their families should provide care for this population. It is essential that diabetes self-management education and support, medical nutrition therapy, and psychosocial support be provided at diagnosis and regularly thereafter in a developmentally appropriate format that builds on prior knowledge by individuals experienced with the biological, educational, nutritional, behavioral, and emotional needs of the growing child and family. The appropriate balance between adult supervision and independent self-care should be defined at the first interaction and reevaluated at subsequent visits, with the expectation that it will evolve as the adolescent gradually becomes an emerging adult.

Dietary management should be individualized: family habits, food preferences, religious or cultural needs, finances, schedules, physical activity, and the patient’s and family’s abilities in numeracy, literacy, and self-management should be considered. Visits with a registered dietician nutritionist is recommended to assess caloric and nutrition intake in relation to weight status and cardiovascular disease risk factors and to inform macronutrient choices. E

Exercise positively impacts metabolic and psychological health in children with type 1 diabetes (13). While it affects insulin sensitivity, physical fitness, strength building, weight management, social interaction, mood, self-esteem building, and creation of healthful habits for adulthood, it also has the potential to cause both hypoglycemia and hyperglycemia. See below for strategies to mitigate hypoglycemia risk and minimize hyperglycemia with exercise. For an in-depth discussion, see recently published reviews and guidelines (14–16).
Overall, it is recommended that youth participate in 60 min of moderate- (e.g., brisk walking, dancing) to vigorous- (e.g., running, jumping rope) intensity aerobic activity daily, including resistance and flexibility training (17). Although uncommon in the pediatric population, patients should be medically evaluated for comorbid conditions or diabetes complications that may restrict participation in an exercise program. As hyperglycemia can occur before, during, and after physical activity, it is important to ensure that the elevated glucose level is not related to insulin deficiency that would lead to worsening hyperglycemia with exercise and ketosis risk. Intense activity should be postponed with marked hyperglycemia, which is similar to carbohydrate restriction (18). Decreasing basal rates or long-acting insulin doses by ~10%–50% or more or suspend for 1–2 h during exercise (18). Decreasing basal rates or long-acting insulin doses by ~20% after exercise may reduce delayed exercise-induced hypoglycemia (19).

The prevention and treatment of hyperglycemia associated with physical activity include decreasing the prandial insulin for the meal/snack before exercise and/or increasing food intake. Patients on insulin pumps can lower basal rates/kg per hour of exercise (\(\frac{60 \text{ min}}{250 \text{ mg/dL}} \)) to optimize performance in athletes without type 1 diabetes (21–23).

In addition, obesity is as common in children and adolescents with type 1 diabetes as in those without diabetes. It is associated with higher frequency of cardiovascular risk factors, and it disproportionately affects racial/ethnic minorities in the U.S. (24–28). Therefore, diabetes care providers should monitor weight status and encourage a healthy diet, exercise, and healthy weight as key components of pediatric type 1 diabetes care.

School and Child Care

As a large portion of a child’s day is spent in school and/or day care, training of school or day care personnel to provide care in accordance with the child’s individualized diabetes medical management plan is essential for optimal diabetes management and safe access to all school or day care sponsored opportunities (10,11,29). In addition, federal and state laws require schools, day care facilities, and other entities to provide needed diabetes care to enable the child to safely access the school or day care environment. Refer to the ADA position statements “Diabetes Care in the School Setting” (10) and “Care of Young Children With Diabetes in the Child Care Setting” (11) and ADA’s Safe at School website (https://www.diabetes.org/resources/children/safeschool-state-laws) for additional details.

Psychosocial Issues

Recommendations

13.9 At diagnosis and during routine follow-up care, assess psychosocial issues and family stresses that could impact diabetes management and provide appropriate referrals to trained mental health professionals, preferably experienced in childhood diabetes.

13.10 Mental health professionals should be considered integral members of the pediatric diabetes multidisciplinary team.

13.11 Encourage developmentally appropriate family involvement in diabetes management tasks for children and adolescents, recognizing that premature transfer of diabetes care to the child can result in diabetes burnout, nonadherence, and deterioration in glycemic control.

13.12 Providers should assess food security, housing stability, homelessness, health literacy, financial barriers, and social/community support and apply that information to treatment decisions.

13.13 Providers should consider asking youth and their parents about social adjustment (peer relationships) and school performance to determine whether further intervention is needed.

13.14 Assess youth with diabetes for psychosocial and diabetes-related distress, generally starting at 7–8 years of age.

13.15 Offer adolescents time by themselves with their care provider(s) starting at age 12 years, or when developmentally appropriate.

13.16 Starting at puberty, preconception counseling should be incorporated into routine diabetes care for all girls of childbearing potential.

13.17 Begin screening youth with type 1 diabetes for eating disorders between 10 and 12 years of age. The Diabetes Eating Problems Survey-Revised (DEPS-R) is a reliable, valid, and brief screening tool for identifying disturbed eating behavior.
validated tools, such as the Problem Areas in Diabetes–Teen (PAID–T) and Parent (P-PAID–T) (36), that can be used in assessing diabetes-specific distress in youth starting at age 12 years and in their parent caregivers. Furthermore, the complexities of diabetes management require ongoing parental involvement in care throughout childhood with developmentally appropriate family teamwork between the growing child/teen and parent in order to maintain adherence and to prevent deterioration in glycemic control (42,43). As diabetes-specific family conflict is related to poorer adherence and glycemic control, it is appropriate to inquire about such conflict during visits and to either help to negotiate a plan for resolution or refer to an appropriate mental health specialist (44). Monitoring of social adjustment (peer relationships) and school performance can facilitate both well-being and academic achievement (45). Suboptimal glycemic control is a risk factor for underperformance at school and increased absenteeism (46).

Shared decision-making with youth regarding the adoption of regimen components and self-management behaviors can improve diabetes self-efficacy, adherence, and metabolic outcomes (25,47). Although cognitive abilities vary, the ethical position often adopted is the “mature minor rule,” whereby children after age 12 or 13 years who appear to be “mature” have the right to consent or withhold consent to general medical treatment, except in cases in which refusal would significantly endanger health (48).

Beginning at the onset of puberty or at diagnosis of diabetes, all adolescent girls and women with childbearing potential should receive education about the risks of malformations associated with poor metabolic control and the use of effective contraception to prevent unplanned pregnancy. Preconception counseling using developmentally appropriate educational tools enables adolescent girls to make well-informed decisions (49). Preconception counseling resources tailored for adolescents are available at no cost through the ADA (50). Refer to the ADA position statement “Psychosocial Care for People With Diabetes” for further details (40).

Youth with type 1 diabetes have an increased risk of disordered eating behavior as well as clinical eating disorders with serious short-term and long-term negative effects on diabetes outcomes and health in general. It is important to recognize the unique and dangerous disordered eating behavior of insulin omission for weight control in type 1 diabetes (51) using tools such as the Diabetes Eating Problems Survey-Revised (DEPS–R) to allow for early diagnosis and intervention (41,52–54).

The presence of a mental health professional on pediatric multidisciplinary teams highlights the importance of attending to the psychosocial issues of diabetes. These psychosocial factors are significantly related to self-management difficulties, suboptimal glycemic control, reduced quality of life, and higher rates of acute and chronic diabetes complications.

Glycemic Control

Recommendations

13.18 Whenever possible, children and adolescents with type 1 diabetes should be treated with intensive insulin regimens, either via multiple daily injections or continuous subcutaneous insulin infusion. A

13.19 All children and adolescents with type 1 diabetes should self-monitor glucose levels multiple times daily (up to 6–10 times/day by glucose meter or continuous glucose monitoring), including prior to meals and snacks, at bedtime, and as needed for safety in specific situations such as exercise, driving, or the presence of symptoms of hypoglycemia. B

13.20 When used properly, real-time continuous glucose monitoring in conjunction with insulin therapy is a useful tool to lower and/or maintain A1C levels and/or reduce hypoglycemia. A

13.21 When used properly, intermittently scanned continuous glucose monitoring in conjunction with insulin therapy can be useful to replace self-monitoring of blood glucose. B

13.22 Automated insulin delivery systems may be considered to improve glycemic control. A

13.23 A1C goals must be individualized and reassessed over time. An A1C of <7% (53 mmol/mol) is appropriate for many children. B

13.24 Less stringent A1C goals (such as <7.5% [58 mmol/mol]) may be appropriate for patients who cannot articulate symptoms of hypoglycemia; have hypoglycemia unawareness; lack access to analog insulins, advanced insulin delivery technology, and/or continuous glucose monitoring; cannot check blood glucose regularly; or have nonglycemic factors that increase A1C (e.g., high glycators). B

13.25 Even less stringent A1C goals (such as <8% [64 mmol/mol]) may be appropriate for patients with a history of severe hypoglycemia, limited life expectancy, or where the harms of treatment are greater than the benefits. B

13.26 Providers may reasonably suggest more stringent A1C goals (such as <6.5% [48 mmol/mol]) for selected individual patients if they can be achieved without significant hypoglycemia, negative impacts on well-being, or undue burden of care, or in those who have nonglycemic factors that decrease A1C (e.g., lower erythrocyte life span). Lower targets may also be appropriate during the honeymoon phase. B

13.27 Continuous glucose monitoring (CGM) metrics derived from CGM use over the most recent 14 days (or longer for patients with more glycemic variability), including time in ranges (within target, below target, and above target), are recommended to be used in conjunction with A1C whenever possible. E
with more children and adolescents reaching the blood glucose targets recommended by the ADA (55–58), particularly in patients of families in which both the parents and the child with diabetes participate jointly to perform the required diabetes-related tasks.

Lower A1C in adolescence and young adulthood is associated with lower risk and rate of microvascular and macrovascular complications (59–63) and demonstrates the effects of metabolic memory (64–67).

In addition, type 1 diabetes can be associated with adverse effects on cognition during childhood and adolescence (6,68,69), and neurocognitive imaging differences related to hyperglycemia in children provide another motivation for lowering glycemic targets (6). DKA has been shown to cause adverse effects on brain development and function. Additional factors (70–73) that contribute to adverse effects on brain development and function include young age, severe hypoglycemia at <6 years of age, and chronic hyperglycemia (74,75). However, meticulous use of new therapeutic modalities such as rapid- and long-acting insulin analogs, technological advances (e.g., continuous glucose monitoring [CGM], sensor-augmented pump therapy with automatic low glucose suspend, and automated insulin delivery systems), and intensive self-management education now make it more feasible to achieve excellent glycemic control while reducing the incidence of severe hypoglycemia (76–86).

In selecting individualized glycemic targets, the long-term health benefits of achieving a lower A1C should be balanced against the risks of hypoglycemia and the developmental burdens of intensive regimens in children and youth. Recent data with newer devices and insulin analogs indicate that the risk of hypoglycemia with lower A1C is less than it was before (77,87–95). Some data suggest that there could be a threshold before (77,87–95) that severe hypoglycemia (87,98). Recent data have demonstrated that the use of real-time CGM lowered A1C and increased time in range in adolescents and young adults and, in children aged <8 years old, was associated with lower risk of hypoglycemia (100,101).

A strong relationship exists between frequency of blood glucose monitoring and glycemic control (78–85,102,103). All children and adolescents with type 1 diabetes should self-monitor glucose levels multiple times daily by glucose meter or CGM. In the U.S., real-time CGM is approved for nonadjunctive use in children aged 2 years and older, and intermittently scanned CGM is approved for nonadjunctive use in children aged 4 years and older. Metrics derived from CGM include percent time in target range, below target range, and above target range (104). While studies indicate a relation between time in range and A1C (105,106), it is still uncertain what the ideal target time in range should be for children, and further studies are needed. Please refer to Section 7 “Diabetes Technology” (https://doi.org/10.2337/dc21-S007) for more information on the use of blood glucose meters, CGM, and insulin pumps. More information on insulin injection technique can be found in Section 9 “Pharmacologic Approaches to Glycemic Treatment” (https://doi.org/10.2337/dc21-S009).

Key Concepts in Setting Glycemic Targets

- Targets should be individualized, and lower targets may be reasonable based on a benefit-risk assessment.
- Blood glucose targets should be modified in children with frequent hypoglycemia or hypoglycemia unawareness.
- Postprandial blood glucose values should be measured when there is a discrepancy between preprandial blood glucose values and A1C levels and to assess preprandial insulin doses in those on basal-bolus or pump regimens.

Autoimmune Conditions

Recommendation 13.28 Assess for additional autoimmune conditions soon after the diagnosis of type 1 diabetes and if symptoms develop.

Autoimmune thyroid disease is the most common autoimmune disorder associated with diabetes, occurring in 17–30% of patients with type 1 diabetes (108,112,113). At the time of diagnosis, ~25% of children with type 1 diabetes have thyroid autoantibodies (114), the presence of which is predictive of thyroid dysfunction—most commonly hypothyroidism, although hyperthyroidism occurs in ~0.5% of patients with type 1 diabetes (115,116). For
thyroid autoantibodies, a study from Sweden indicated that antithyroid peroxidase antibodies were more predictive than antithyroglobulin antibodies in multivariate analysis (117). Thyroid function tests may be misleading (euthyroid sick syndrome) if performed at the time of diagnosis owing to the effect of previous hyperglycemia, ketosis or ketoacidosis, weight loss, etc. Therefore, if performed at diagnosis and slightly abnormal, thyroid function tests should be repeated soon after a period of metabolic stability and achievement of glycemic targets. Subclinical hypothyroidism may be associated with increased risk of symptomatic hypoglycemia (118) and reduced linear growth rate. Hyperthyroidism alters glucose metabolism and usually causes deterioration of glycemic control.

Celiac Disease

Recommendations

13.31 Screen children with type 1 diabetes for celiac disease by measuring IgA tissue transglutaminase (tTG) antibodies, with documentation of normal total serum IgA levels, soon after the diagnosis of diabetes, or IgG to tTG and deamidated gliadin antibodies if IgA deficient. B

13.32 Repeat screening within 2 years of diabetes diagnosis and then again after 5 years and consider more frequent screening in children who have symptoms or a first-degree relative with celiac disease. B

13.33 Individuals with confirmed celiac disease should be placed on a gluten-free diet for treatment and to avoid complications; they should also have a consultation with a dietitian experienced in managing both diabetes and celiac disease. B

Celiac disease is an immune-mediated disorder that occurs with increased frequency in patients with type 1 diabetes (1.6–16.4% of individuals compared with 0.3–1% in the general population) (107,110,111,119–123). Screening patients with type 1 diabetes for celiac disease is further justified by its association with osteoporosis, iron deficiency, growth failure, and potential increased risk of retinopathy and albuminuria (124–127).

Screening for celiac disease includes measuring serum levels of IgA and tissue transglutaminase antibodies, or, with IgA deficiency, screening can include measuring IgG tissue transglutaminase antibodies or IgG deamidated gliadin peptide antibodies. Because most cases of celiac disease are diagnosed within the first 5 years after the diagnosis of type 1 diabetes, screening should be considered at the time of diagnosis and repeated at 2 and then 5 years (121) or if clinical symptoms indicate, such as poor growth or increased hypoglycemia (122,124).

Although celiac disease can be diagnosed more than 10 years after diabetes diagnosis, there are insufficient data after 5 years to determine the optimal screening frequency. Measurement of tissue transglutaminase antibody should be considered at other times in patients with symptoms suggestive of celiac disease (121). Monitoring for symptoms should include assessment of linear growth and weight gain (122,124). A small bowel biopsy in antibody-positive children is recommended to confirm the diagnosis (128). European guidelines on screening for celiac disease in children (not specific to children with type 1 diabetes) suggest that biopsy may not be necessary in asymptomatic children with high antibody titers (i.e., greater than 10 times the upper limit of normal) provided that further testing is performed (verification of endomysial antibody positivity on a separate blood sample). Whether this approach may be appropriate for asymptomatic children in high-risk groups remains an open question, though evidence is emerging (129).

Hypertension Screening

Recommendation

13.34 Blood pressure should be measured at each routine visit. Children found to have elevated blood pressure (systolic blood pressure or diastolic blood pressure ≥90th percentile for age, sex, and height or, in adolescents ≥13 years, systolic blood pressure 120–129 mmHg with diastolic blood pressure <80 mmHg) or hypertension (systolic blood pressure or diastolic blood pressure ≥95th percentile for age, sex, and height or, in adolescents ≥13 years, systolic blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg) should have elevated blood pressure confirmed on three separate days. B

Hypertension Treatment

Recommendations

13.35 Initial treatment of elevated blood pressure (systolic blood pressure or diastolic blood pressure consistently ≥90th percentile for age, sex, and height or ≥120/80 mmHg in adolescents ≥13 years) includes dietary modification and increased exercise, if appropriate, aimed at weight control. If target blood pressure is not reached within 3–6 months of initiating lifestyle intervention, pharmacologic treatment should be considered. E

13.36 In addition to lifestyle modification, pharmacologic treatment of hypertension (systolic blood pressure or diastolic blood pressure consistently ≥95th percentile for age, sex, and height or ≥140/90 mmHg in adolescents ≥13 years) should be considered as soon as hypertension is confirmed. E
Blood pressure measurements should be performed using the appropriate size cuff with the child seated and relaxed. Hypertension should be confirmed on at least three separate days. Evaluation should proceed as clinically indicated (133). Treatment is generally initiated with an ACE inhibitor, but an angiotensin receptor blocker can be used if the ACE inhibitor is not tolerated (e.g., due to cough) (134).

Dyslipidemia Testing

Recommendations

13.39 Initial lipid testing should be performed when initial glycemic control has been achieved and age is ≥2 years. If initial LDL cholesterol is ≤100 mg/dL (2.6 mmol/L), subsequent testing should be performed at 9–11 years of age. Blood testing may be done with a nonfasting non-HDL cholesterol level with confirmatory testing with a fasting lipid panel.

13.40 If LDL cholesterol values are within the accepted risk level (<100 mg/dL [2.6 mmol/L]), a lipid profile repeated every 3 years is reasonable.

Dyslipidemia Treatment

Recommendations

13.41 If lipids are abnormal, initial therapy should consist of optimizing glucose control and medical nutrition therapy to limit the amount of calories from fat to 25–30%, saturated fat to ≤7%, cholesterol ≤200 mg/day, avoidance of trans fats, and aim for ~10% calories from monounsaturated fats.

13.42 After the age of 10 years, addition of a statin may be considered in patients who, despite medical nutrition therapy and lifestyle changes, continue to have LDL cholesterol >160 mg/dL (4.1 mmol/L) or LDL cholesterol >130 mg/dL (3.4 mmol/L) and one or more cardiovascular disease risk factors, following reproductive counseling for females because of the potential teratogenic effects of statins.

13.43 The goal of therapy is an LDL cholesterol value ≤100 mg/dL (2.6 mmol/L).

Population-based studies estimate that 14–45% of children with type 1 diabetes have two or more atherosclerotic cardiovascular disease (ASCVD) risk factors (135–137), and the prevalence of cardiovascular disease (CVD) risk factors increases with age (137) and among racial/ethnic minorities (24), with girls having a higher risk burden than boys (136).

Pathophysiology. The atherosclerotic process begins in childhood, and although ASCVD events are not expected to occur during childhood, observations using a variety of methodologies show that youth with type 1 diabetes may have subclinical CVD within the first decade of diagnosis (138–140). Studies of carotid intima-media thickness have yielded inconsistent results (133,134).

Screening. Diabetes predisposes to development of accelerated atherosclerosis. Lipid evaluation for these patients contributes to risk assessment and identifies an important proportion of those with dyslipidemia. Therefore, initial screening should be done soon after diagnosis. If the initial screen is normal, subsequent screening may be done at 9–11 years of age, which is a stable time for lipid assessment in children (141). Children with a primary lipid disorder (e.g., familial hyperlipidemia) should be referred to a lipid specialist. Non-HDL cholesterol level has been identified as a significant predictor of the presence of atherosclerosis—as powerful as any other lipoprotein cholesterol measure in children and adolescents. For both children and adults, non-HDL cholesterol level seems to be more predictive of persistent dyslipidemia and, therefore, atherosclerosis and future events than total cholesterol, LDL cholesterol, or HDL cholesterol levels alone. A major advantage of non-HDL cholesterol is that it can be accurately calculated in a nonfasting state and is therefore practical to obtain in clinical practice as a screening test (142). Youth with type 1 diabetes have a high prevalence of lipid abnormalities (135,143).

Even if normal, screening should be repeated within 3 years, as glycemic control and other cardiovascular risk factors can change dramatically during adolescence (144).

Treatment. Pediatric lipid guidelines provide some guidance relevant to children with type 1 diabetes and secondary dyslipidemia (133,141,145,146); however, there are few studies on modifying lipid levels in children with type 1 diabetes. A 6-month trial of dietary counseling produced a significant improvement in lipid levels (147); likewise, a lifestyle intervention trial with 6 months of exercise in adolescents demonstrated improvement in lipid levels (148). Data from the SEARCH for Diabetes in Youth (SEARCH) study show that improved glucose over a 2-year period is associated with a more favorable lipid profile; however, improved glycemia alone will not normalize lipids in youth with type 1 diabetes and dyslipidemia (144).

Although intervention data are sparse, the American Heart Association categorizes children with type 1 diabetes in the highest tier for cardiovascular risk and recommends both lifestyle and pharmacologic treatment for those with elevated LDL cholesterol levels (146,149). Initial therapy should be with a nutrition plan that restricts saturated fat to 7% of total calories and dietary cholesterol to 200 mg/day. Data from randomized clinical trials in children as young as 7 months of age indicate that this diet is safe and does not interfere with normal growth and development (150).

Neither long-term safety nor cardiovascular outcome efficacy of statin therapy has been established for children; however, studies have shown short-term safety equivalent to that seen in adults and efficacy in lowering LDL cholesterol levels in familial hypercholesterolemia or severe hyperlipidemia, improving endothelial function and causing regression of carotid intimal thickening (151,152). Statins are not approved for patients aged <10 years, and statin treatment should generally not be used in children with type 1 diabetes before this age.
Statins are contraindicated in pregnancy; therefore, prevention of unplanned pregnancies is of paramount importance. Statins should be avoided in females of childbearing age who are sexually active and not using reliable contraception (see Section 14 “Management of Diabetes in Pregnancy,” https://doi.org/10.2337/dc21-S014, for more information). The multicenter, randomized, placebo-controlled Adolescent Type 1 Diabetes Cardio-Renal Intervention Trial (AdDIT) provides safety data on pharmacologic treatment with an ACE inhibitor and statin in adolescents with type 1 diabetes.

Smoking

Recommendations

13.44 Elicit a smoking history at initial and follow-up diabetes visits; discourage smoking in youth who do not smoke and encourage smoking cessation in those who do smoke.

13.45 Electronic cigarette use should be discouraged.

The adverse health effects of smoking are well recognized with respect to future cancer and CVD risk. Despite this, smoking rates are significantly higher among youth with diabetes than among youth without diabetes (153,154). In youth with diabetes, it is important to avoid additional CVD risk factors. Smoking increases the risk of onset of albuminuria; therefore, smoking avoidance is important to prevent both microvascular and macrovascular complications (141,155). Discouraging cigarette smoking, including electronic cigarettes (156,157), is an important part of routine diabetes care. In light of recent Centers for Disease Control and Prevention evidence of deaths related to electronic cigarette use (158,159), no persons should be advised to use electronic cigarettes, either as a way to stop smoking tobacco or as a recreational drug. In younger children, it is important to assess exposure to cigarette smoke in the home because of the adverse effects of secondhand smoke and to discourage youth from ever smoking.

Microvascular Complications

Nephropathy Screening

Recommendation

13.46 Annual screening for albuminuria with a random (morning sample preferred to avoid effects of exercise) spot urine sample for albumin-to-creatinine ratio should be considered at puberty or at age >10 years, whichever is earlier, once the child has had diabetes for 5 years.

Nephropathy Treatment

Recommendation

13.47 An ACE inhibitor or an angiotensin receptor blocker, titrated to normalization of albumin excretion, may be considered when elevated urinary albumin-to-creatinine ratio (>30 mg/g) is documented (two of three urine samples obtained over a 6-month interval following efforts to improve glycemic control and normalize blood pressure).

Data from 7,549 participants <20 years of age in the T1D Exchange clinic registry emphasize the importance of good glycemic and blood pressure control, particularly as diabetes duration increases, in order to reduce the risk of diabetic kidney disease. The data also underscore the importance of routine screening to ensure early diagnosis and timely treatment of albuminuria (160). An estimation of glomerular filtration rate (GFR), calculated using GFR estimating equations from the serum creatinine, height, age, and sex (161), should be considered at baseline and repeated as indicated based on clinical status, age, diabetes duration, and therapies. Improved methods are needed to screen for early GFR loss, since estimated GFR is inaccurate at GFR >60 mL/min/1.73 m² (161,162). The AdDIT study in adolescents with type 1 diabetes demonstrated the safety of ACE inhibitor treatment, but the treatment did not change the albumin-to-creatinine ratio over the course of the study (133).

Retinopathy

Recommendations

13.48 An initial dilated and comprehensive eye examination is recommended once youth have had type 1 diabetes for 3–5 years, provided they are aged ≥11 years or puberty has started, whichever is earlier.

13.49 After the initial examination, repeat dilated and comprehensive eye examination every 2 years. Less frequent examinations, every 4 years, may be acceptable on the advice of an eye care professional and based on risk factor assessment, including a history of glycemic control with A1C <8%.

Retinopathy (like albuminuria) most commonly occurs after the onset of puberty and after 5–10 years of diabetes duration (163). It is currently recognized that there is low risk of development of vision-threatening retinal lesions prior to 12 years of age (164,165). A 2019 publication based on the follow-up of the DCCT adolescent cohort supports lower frequency of eye examinations than previously recommended, in particular in adolescents with A1C closer to the target range (166,167). Referrals should be made to eye care professionals with expertise in diabetic retinopathy and experience in counseling pediatric patients and families on the importance of prevention, early detection, and intervention.

Neuropathy

Recommendation

13.50 Consider an annual comprehensive foot exam at the start of puberty or at age ≥10 years, whichever is earlier, once the youth has had type 1 diabetes for 5 years.

Diabetic neuropathy rarely occurs in prepubertal children or after only 1–2 years of diabetes (163), although data suggest a prevalence of distal peripheral neuropathy of 7% in 1,734 youth with type 1 diabetes and association with the presence of CVD risk factors (168,169). A comprehensive foot exam, including inspection, palpation of dorsalis pedis and posterior tibial pulses, and determination of proprioception, vibration, and monofilament sensation, should be performed annually along with an assessment of symptoms of neuropathic pain (169). Foot inspection can be performed at each visit to educate youth regarding the importance of foot care (see Section 11 “Microvascular Complications and Foot Care,” https://doi.org/10.2337/dc21-S011).
TYPE 2 DIABETES

For information on risk-based screening for type 2 diabetes and prediabetes in children and adolescents, please refer to Section 2 “Classification and Diagnosis of Diabetes” (https://doi.org/10.2337/dc21-S002). For additional support for these recommendations, see the ADA position statement “Evaluation and Management of Youth-Onset Type 2 Diabetes” (2).

Type 2 diabetes in youth has increased over the past 20 years, and recent estimates suggest an incidence of ~5,000 new cases per year in the U.S. (170). The Centers for Disease Control and Prevention published projections for type 2 diabetes prevalence using the SEARCH database; assuming a 2.3% annual increase, the prevalence in those under 20 years of age will quadruple in 40 years (171,172).

Evidence suggests that type 2 diabetes in youth is different not only from type 1 diabetes but also from type 2 diabetes in adults and has unique features, such as a more rapidly progressive decline in β-cell function and accelerated development of diabetes complications (2,173). Type 2 diabetes disproportionately impacts youth of ethnic and racial minorities and can occur in complex psychosocial and cultural environments, which may make it difficult to sustain healthy lifestyle changes and self-management behaviors (25,174–177). Additional risk factors associated with type 2 diabetes in youth include adiposity, family history of diabetes, female sex, and low socioeconomic status (173).

As with type 1 diabetes, youth with type 2 diabetes spend much of the day in school. Therefore, close communication with and the cooperation of school personnel are essential for optimal diabetes management, safety, and maximal academic opportunities.

Screening and Diagnosis

Recommendations

13.51 Risk-based screening for prediabetes and/or type 2 diabetes should be considered in children and adolescents after the onset of puberty or ≥10 years of age, whichever occurs earlier, with overweight (BMI ≥85th percentile) or obesity (BMI ≥95th percentile) and who have one or more additional risk factors for diabetes (see Table 2.4 for evidence grading of other risk factors).

13.52 If tests are normal, repeat testing at a minimum of 3-year intervals E, or more frequently if BMI is increasing. C

13.53 Fasting plasma glucose, 2-h plasma glucose during a 75-g oral glucose tolerance test, and A1C can be used to test for prediabetes or diabetes in children and adolescents. B

13.54 Children and adolescents with overweight or obesity in whom the diagnosis of type 2 diabetes is being considered should have a panel of pancreatic autoantibodies tested to exclude the possibility of autoimmune type 1 diabetes. B

In the last decade, the incidence and prevalence of type 2 diabetes in adolescents has increased dramatically, especially in racial and ethnic minority populations (141,178). A few studies suggest oral glucose tolerance tests or fasting plasma glucose values as more suitable diagnostic tests than A1C in the pediatric population, especially among certain ethnicities (179), although fasting glucose alone may overdiagnose diabetes in children (180,181). In addition, many of these studies do not recognize that diabetes diagnostic criteria are based on long-term health outcomes, and validations are not currently available in the pediatric population (182). A recent analysis of National Health and Nutrition Examination Survey (NHANES) data suggests using A1C for screening of high-risk youth (183).

The ADA acknowledges the limited data supporting A1C for diagnosing type 2 diabetes in children and adolescents. Although A1C is not recommended for diagnosis of diabetes in children with cystic fibrosis or symptoms suggestive of acute onset of type 1 diabetes, and only A1C assays without interference are appropriate for children with hemoglobinopathies, the ADA continues to recommend A1C for diagnosis of type 2 diabetes in this population (184,185).

Diagnostic Challenges

Given the current obesity epidemic, distinguishing between type 1 and type 2 diabetes in children can be difficult. Overweight and obesity are common in children with type 1 diabetes (26), and diabetes-associated autoantibodies and ketosis may be present in pediatric patients with features of type 2 diabetes (including obesity and acanthosis nigricans) (180). The presence of islet autoantibodies has been associated with faster progression to insulin deficiency (180). At onset, DKA occurs in ~6% of youth aged 10–19 years with type 2 diabetes (186). Although uncommon, type 2 diabetes has been observed in prepubertal children under the age of 10 years, and thus it should be part of the differential in children with suggestive symptoms (187). Finally, obesity contributes to the development of type 1 diabetes in some individuals (188), which further blurs the lines between diabetes types. However, accurate diagnosis is critical, as treatment regimens, educational approaches, dietary advice, and outcomes differ markedly between patients with the two diagnoses. The significant diagnostic difficulties posed by MODY are discussed in Section 2 “Classification and Diagnosis of Diabetes” (https://doi.org/10.2337/dc21-S002).

In addition, there are rare and atypical diabetes cases that represent a challenge for clinicians and researchers.

Management

Lifestyle Management

Recommendations

13.55 All youth with type 2 diabetes and their families should receive comprehensive diabetes self-management education and support that is specific to youth with type 2 diabetes and is culturally appropriate. B

13.56 Youth with overweight/obesity and type 2 diabetes and their families should be provided with developmentally and culturally appropriate comprehensive lifestyle programs that are integrated with diabetes management to achieve 7–10% decrease in excess weight. C

13.57 Given the necessity of long-term weight management for children and adolescents with type 2 diabetes, lifestyle intervention should be based on a chronic care model and offered in the context of diabetes care. E
Glycemic Targets

Recommendations

13.60 Home self-monitoring of blood glucose regimens should be individualized, taking into consideration the pharmacologic treatment of the patient.

13.61 Glycemic status should be assessed every 3 months.

13.62 A reasonable A1C target for most children and adolescents with type 2 diabetes treated with oral agents alone is <7% (53 mmol/mol). More stringent A1C targets (such as <6.5% [48 mmol/mol]) may be appropriate for selected individual patients if they can be achieved without significant hypoglycemia or other adverse effects of treatment. Appropriate patients might include those with short duration of diabetes and lesser degrees of β-cell dysfunction and patients treated with lifestyle or metformin only who achieve significant weight improvement.

13.63 Less stringent A1C goals (such as 7.5% [58 mmol/mol]) may be appropriate if there is increased risk of hypoglycemia.

13.64 A1C targets for patients on insulin should be individualized, taking into account the relatively low rates of hypoglycemia in youth-onset type 2 diabetes.

Pharmacologic Management

Recommendations

13.65 Initiate pharmacologic therapy, in addition to behavioral counseling for healthful nutrition and physical activity changes, at diagnosis of type 2 diabetes.

13.66 In incidentally diagnosed or metabolically stable patients (A1C <8.5% [69 mmol/mol] and asymptomatic), metformin is the initial pharmacologic treatment of choice if renal function is normal.

13.67 Youth with marked hyperglycemia (blood glucose ≥250 mg/dL [13.9 mmol/L], A1C ≥8.5% [69 mmol/mol]) without acidosis at diagnosis who are symptomatic with polyuria, polydipsia, nocturia, and/or weight loss should be treated initially with basal insulin while metformin is initiated and titrated.

13.68 In patients with ketosis/ketoacidosis, treatment with subcutaneous or intravenous insulin should be initiated to rapidly correct the hyperglycemia and the metabolic derangement. Once acidosis is resolved, metformin should be initiated while subcutaneous insulin therapy is continued.

13.69 In individuals presenting with severe hyperglycemia (blood glucose ≥600 mg/dL [33.3 mmol/L]), consider assessment for hyperglycemic hyperosmolar nonketotic syndrome.

13.70 If glycemic targets are no longer met with metformin (with or without basal insulin), liraglutide (a glucagon-like peptide 1 receptor agonist) therapy should be considered in children 10 years of age or older if they have no past medical history or family history of medullary thyroid carcinoma or multiple endocrine neoplasia type 2.

13.71 Patients treated with basal insulin who do not meet glycemic target should be moved to multiple daily injections with basal and premeal bolus insulins.

13.72 In patients initially treated with insulin and metformin who are meeting glucose targets based on home blood glucose monitoring, insulin can be tapered over 2–6 weeks by decreasing the insulin dose 10–30% every few days.

13.73 Use of medications not approved by the U.S. Food and Drug Administration for youth with type 2 diabetes is not recommended outside of research trials.

Treatment of youth-onset type 2 diabetes should include lifestyle management, diabetes self-management education, and pharmacologic treatment. Initial treatment of youth with obesity and diabetes must take into account that diabetes type is often uncertain in the first few weeks of treatment, due to overlap in presentation, and that a substantial percentage of youth with type 2 diabetes will present with clinically significant ketoacidosis. Therefore, initial therapy should address the hyperglycemia and associated metabolic derangements irrespective of ultimate diabetes type, with adjustment of therapy once metabolic compensation has been established and subsequent information, such as islet autoantibody results, becomes available. Figure 13.1 provides an approach to initial treatment of new-onset diabetes in youth with overweight or obesity with clinical suspicion of type 2 diabetes.

Glycemic targets should be individualized, taking into consideration long-term health benefits of more stringent targets and risk for adverse effects, such as hypoglycemia. A lower target A1C in youth with type 2 diabetes when compared with those recommended in type 1 diabetes is justified by lower risk of hypoglycemia and higher risk of complications.
sensitive to family resources (see Section 5 “Facilitating Behavior Change and Well-being to Improve Health Outcomes,” https://doi.org/10.2337/dc21-S005). Given the complex social and environmental context surrounding youth with type 2 diabetes, individual-level lifestyle interventions may not be sufficient to target the complex interplay of family dynamics, mental health, community readiness, and the broader environmental system (2).

A multidisciplinary diabetes team, including a physician, diabetes care and education specialist, registered dietitian nutritionist, and psychologist or social worker, is essential. In addition to achieving glycemic targets and self-management education (194–196), initial treatment must include management of comorbidities such as obesity, dyslipidemia, hypertension, and microvascular complications.

Current pharmacologic treatment options for youth-onset type 2 diabetes are limited to three approved drugs—inulin, metformin, and liraglutide (2). Presentation with ketoacidosis or marked ketosis requires a period of insulin therapy until fasting and postprandial glycemia have been restored to normal or near-normal levels. Insulin pump therapy may be considered as an option for those on long-term multiple daily injections who are able to safely manage the device. Metformin therapy may be used as an adjunct after resolution of ketosis/ketoacidosis. Initial treatment should also be with insulin when the distinction between type 1 diabetes and type 2 diabetes is unclear and in patients who have random blood glucose concentrations ≥250 mg/dL (13.9 mmol/L) and/or A1C ≥8.5% (69 mmol/mol) (197).

When insulin treatment is not required, initiation of metformin is recommended. The Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study found that metformin alone provided durable glycemic control (A1C ≤8% [64 mmol/mol] for 6 months) in approximately half of the subjects (198). The RISE Consortium study did not demonstrate differences in measures of glucose or β-cell function preservation between metformin and insulin, but there was more weight gain with insulin (199).

To date, the TODAY study is the only trial combining lifestyle and metformin therapy in youth with type 2 diabetes; the combination did not perform better than metformin alone in achieving durable glycemic control (198).

A recent randomized clinical trial in children aged 10–17 years with type 2 diabetes demonstrated the addition of subcutaneous liraglutide (up to 1.8 mg daily) to metformin (with or without basal insulin) as safe and effective to decrease A1C (estimated decrease of 1.06 percentage points at 26 weeks and 1.30 at 52 weeks), although it did increase the frequency of gastrointestinal side effects (200). Liraglutide is approved
for treatment of type 2 diabetes in youth aged 10 years or older (201).

Home self-monitoring of blood glucose regimens should be individualized, taking into consideration the pharmacologic treatment of the patient. Although data on CGM in youth with type 2 diabetes is sparse (202), CGM could be considered in individuals requiring frequent blood glucose monitoring for diabetes management.

Metabolic Surgery

Recommendations

13.74 Metabolic surgery may be considered for the treatment of adolescents with type 2 diabetes who have severe obesity (BMI > 35 kg/m²) and who have uncontrolled glycemia and/or serious comorbidities despite lifestyle and pharmacologic intervention. A

13.75 Metabolic surgery should be performed only by an experienced surgeon working as part of a well-organized and engaged multidisciplinary team including a surgeon, endocrinologist, dietitian nutritionist, behavioral health specialist, and nurse. A

The results of weight-loss and lifestyle interventions for obesity in children and adolescents have been disappointing, and no effective and safe pharmacologic intervention is available or approved by the U.S. Food and Drug Administration in youth. Over the last decade, weight-loss surgery has been increasingly performed in adolescents with obesity. Small retrospective analyses and a prospective multicenter nonrandomized study suggest that bariatric or metabolic surgery may have benefits in adolescents with obesity and type 2 diabetes similar to those observed in adults. Teenagers experience similar degrees of weight loss, diabetes remission, and improvement of cardiometabolic risk factors for at least 3 years after surgery (203). A secondary data analysis from the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) and TODAY studies suggests surgical treatment of adolescents with severe obesity and type 2 diabetes is associated with improved glycemic control (204); however, no randomized trials have yet compared the effectiveness and safety of surgery to those of conventional treatment options in adolescents (205). The guidelines used as an indication for metabolic surgery in adolescents generally include BMI > 35 kg/m² with comorbidities or BMI > 40 kg/m² with or without comorbidities (206–217). A number of groups, including the Pediatric Bariatric Study Group and Teen-LABS study, have demonstrated the effectiveness of metabolic surgery in adolescents (210–216).

Prevention and Management of Diabetes Complications

Nephropathy

Recommendations

13.76 Blood pressure should be measured at every visit. A

13.77 Blood pressure should be optimized to reduce risk and/or slow the progression of diabetic kidney disease. A

13.78 If blood pressure is ≥90th percentile for age, sex, and height or, in adolescents ≥13 years, blood pressure is ≥120/80 mm Hg, increased emphasis should be placed on lifestyle management to promote weight loss. If blood pressure remains above the 90th percentile or, in adolescents ≥13 years, blood pressure is ≥120/80 after 6 months, antihypertensive therapy should be initiated. C

13.79 In addition to lifestyle modification, pharmacologic treatment of hypertension (systolic blood pressure or diastolic blood pressure consistently ≥95th percentile for age, sex, and height or ≥140/90 mmHg in adolescents ≥13 years) should be considered as soon as hypertension is confirmed. E

13.80 Initial therapeutic options include ACE inhibitors or angiotensin receptor blockers. Other blood pressure–lowering agents may be added as needed. C

13.81 Protein intake should be at the recommended daily allowance of 0.8 g/kg/day. E

13.82 Urine albumin-to-creatinine ratio should be obtained at the time of diagnosis and annually thereafter. An elevated urine albumin-to-creatinine ratio (>30 mg/g creatinine) should be confirmed on two of three samples. B

13.83 Estimated glomerular filtration rate should be determined at the time of diagnosis and annually thereafter. E

13.84 In nonpregnant patients with diabetes and hypertension, either an ACE inhibitor or an angiotensin receptor blocker is recommended for those with modestly elevated urinary albumin-to-creatinine ratio (30–299 mg/g creatinine) and is strongly recommended for those with urinary albumin-to-creatinine ratio ≥300 mg/g creatinine and/or estimated glomerular filtration rate < 60 ml/min/1.73 m². E

13.85 For those with nephropathy, continued monitoring (yearly urinary albumin-to-creatinine ratio, estimated glomerular filtration rate, and serum potassium) may aid in assessing adherence and detecting progression of disease. E

13.86 Referral to nephrology is recommended in case of uncertainty of etiology, worsening urinary albumin-to-creatinine ratio, or decrease in estimated glomerular filtration rate. E

Neuropathy

Recommendations

13.87 Youth with type 2 diabetes should be screened for the presence of neuropathy by foot examination at diagnosis and annually. The examination should include inspection, assessment of foot pulses, pinprick and 10-g monofilament sensation tests, testing of vibration sensation using a 128-Hz tuning fork, and ankle reflex tests. C

13.88 Prevention should focus on achieving glycemic targets. C

Retinopathy

Recommendations

13.89 Screening for retinopathy should be performed by dilated fundoscopy or retinal
Nonalcoholic Fatty Liver Disease

Recommendations

13.92 Evaluation for nonalcoholic fatty liver disease (by measuring AST and ALT) should be done at diagnosis and annually thereafter. B

13.93 Referral to gastroenterology should be considered for persistently elevated or worsening transaminases. B

Obstructive Sleep Apnea

Recommendation

13.94 Screening for symptoms of sleep apnea should be done at each visit, and referral to a pediatric sleep specialist for evaluation and a polysomnogram, if indicated, is recommended. Obstructive sleep apnea should be treated when documented. B

Polycystic Ovary Syndrome

Recommendations

13.95 Evaluate for polycystic ovary syndrome in female adolescents with type 2 diabetes, including laboratory studies when indicated. B

13.96 Oral contraceptive pills for treatment of polycystic ovary syndrome are not contraindicated for girls with type 2 diabetes. C

13.97 Metformin in addition to lifestyle modification is likely to improve the menstrual cyclicity and hyperandrogenism in girls with type 2 diabetes. E

Cardiovascular Disease

Recommendation

13.98 Intensive lifestyle interventions focusing on weight loss, dyslipidemia, hypertension, and dysglycemia are important to prevent overt macrovascular disease in early adulthood. E

Dyslipidemia

Recommendations

13.99 Lipid testing should be performed when initial glycemic control has been achieved and annually thereafter. B

13.100 Optimal goals are LDL cholesterol <100 mg/dL (2.6 mmol/L), HDL cholesterol >35 mg/dL (0.91 mmol/L), and triglycerides <150 mg/dL (1.7 mmol/L). E

13.101 If lipids are abnormal, initial therapy should consist of optimizing glucose control and medical nutritional therapy to limit the amount of calories from fat to 25–30%, saturated fat to <7%, cholesterol <200 mg/day, avoid trans fats, and aim for ~10% calories from monounsaturated fats for elevated LDL. For elevated triglycerides, medical nutrition therapy should also focus on decreasing simple sugar intake and increasing dietary n-3 fatty acids in addition to the above changes. A

13.102 If LDL cholesterol remains >130 mg/dL after 6 months of dietary intervention, initiate therapy with statin, with a goal of LDL <100 mg/dL, following reproductive counseling for females because of the potential teratogenic effects of statins. B

13.103 If triglycerides are >400 mg/dL (4.7 mmol/L) fasting or >1,000 mg/dL (11.6 mmol/L) nonfasting, optimize glycemia and begin fibrate, with a goal of <400 mg/dL (4.7 mmol/L) fasting (to reduce risk for pancreatitis). C

Cardiac Function Testing

Recommendation

13.104 Routine screening for heart disease with electrocardiogram, echocardiogram, or stress testing is not recommended in asymptomatic youth with type 2 diabetes. B

Comorbidities may already be present at the time of diagnosis of type 2 diabetes in youth (173,218). Therefore, blood pressure measurement, a fasting lipid panel, assessment of random urine albumin-to-creatinine ratio, and a dilated eye examination should be performed at diagnosis. Additional medical conditions that may need to be addressed include polycystic ovary disease and other comorbidities associated with pediatric obesity, such as sleep apnea, hepatic steatosis, orthopedic complications, and psychosocial concerns. The ADA position statement “Evaluation and Management of Youth-Onset Type 2 Diabetes” (2) provides guidance on the prevention, screening, and treatment of type 2 diabetes and its comorbidities in children and adolescents.

Youth-onset type 2 diabetes is associated with significant microvascular and macrovascular risk burden and a substantial increase in the risk of cardiovascular morbidity and mortality at an earlier age than in those diagnosed later in life (219). The higher complication risk in earlier-onset type 2 diabetes is likely related to prolonged lifetime exposure to hyperglycemia and other atherogenic risk factors, including insulin resistance, dyslipidemia, hypertension, and chronic inflammation. There is low risk of hyperglycemia in youth with type 2 diabetes, even if they are being treated with insulin (220), and there are high rates of complications (190–193). These diabetes comorbidities also appear to be higher than in youth with type 1 diabetes despite shorter diabetes duration and lower A1C (218). In addition, the progression of vascular abnormalities appears to be more pronounced in youth-onset type 2 diabetes compared with type 1 diabetes of similar duration, including ischemic heart disease and stroke (221).

Psychosocial Factors

Recommendations

13.105 Providers should assess food security, housing stability/homelessness, health literacy, financial barriers, and social/community support and apply that information to treatment decisions. E

13.106 Use patient-appropriate standardized and validated tools to assess for diabetes distress and mental/behavioral health.
Most youth with type 2 diabetes come from racial/ethnic minority groups, have low socioeconomic status, and often experience multiple psychosocial stressors (25,40,174–177). Consideration of the sociocultural context and efforts to personalize diabetes management are of critical importance to minimize barriers to care, enhance adherence, and maximize response to treatment.

Evidence about psychiatric disorders and symptoms in youth with type 2 diabetes is limited (222–226), but given the sociocultural context for many youth and the medical burden and obesity associated with type 2 diabetes, ongoing surveillance of mental health/behavioral health is indicated. Symptoms of depression and disordered eating are common and associated with poorer glycemic control (223,227,228).

Many of the medications prescribed for diabetes and psychiatric disorders are associated with weight gain and can increase patients’ concerns about eating, body shape, and weight (229,230).

The TODAY study documented (231) that despite disease- and age-specific counseling, 10.2% of the females in the cohort became pregnant over an average of 3.8 years of study participation. Of note, 26.4% of pregnancies ended in a miscarriage, stillbirth, or intrauterine death, and 20.5% of the liveborn infants had a major congenital anomaly.

TRANSITION FROM PEDIATRIC TO ADULT CARE

Recommendations

13.107 When choosing glucose-lowering or other medications for youth with overweight or obesity and type 2 diabetes, consider medication-taking behavior and their effect on weight.

13.108 Starting at puberty, preconception counseling should be incorporated into routine diabetes clinic visits for all females of childbearing potential because of the adverse pregnancy outcomes in this population.

13.109 Patients should be screened for tobacco, electronic cigarettes, and alcohol use at diagnosis and regularly thereafter.

Care and close supervision of diabetes management are increasingly shifted from parents and other adults to the youth with type 1 or type 2 diabetes throughout childhood and adolescence. The shift from pediatric to adult health care providers, however, often occurs abruptly as the older teen enters the next developmental stage, referred to as emerging adulthood (232), which is a critical period for young people who have diabetes. During this period of major life transitions, youth begin to move out of their parents’ homes and must become fully responsible for their diabetes care. Their new responsibilities include self-management of their diabetes, making medical appointments, and financing health care, once they are no longer covered by their parents’ health insurance plans (ongoing coverage until age 26 years is currently available under provisions of the U.S. Affordable Care Act). In addition to lapses in health care, this is also a period associated with deterioration in glycemic stability; increased occurrence of acute complications; psychosocial, emotional, and behavioral challenges; and the emergence of chronic complications (233–236). The transition period from pediatric to adult care is prone to fragmentation in health care delivery, which may adversely impact health care quality, cost, and outcomes (237). Worsening diabetes health outcomes during transition to adult care and early adulthood have been documented (238,239).

Although scientific evidence is limited, it is clear that comprehensive and coordinated planning that begins in early adolescence is necessary to facilitate a seamless transition from pediatric to adult health care (233,234,240,241). New technologies and other interventions are being tried to support transition to adult care in young adulthood (242–246). A comprehensive discussion regarding the challenges faced during this period, including specific recommendations, is found in the ADA position statement “Diabetes Care for Emerging Adults: Recommendations for Transition From Pediatric to Adult Diabetes Care Systems” (234).

The Endocrine Society in collaboration with the ADA and other organizations has developed transition tools for clinicians and youth and families (241).
55. Rosenbauer J, Dost A, Karges B, et al.; DPV Initiative and the German BMBF Competence...
91. Ly TT, Nicholas JA, Retterath A, Lim EM, Davis EA, Jones TW. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: a randomized clinical trial. JAMA 2013;310:1240–1247
94. Johnson SR, Cooper MN, Jones TW, Davis EA. Long-term outcome of insulin pump therapy in

146. Kavey R-EW, Allada V, Daniels SR, et al.; American Heart Association Expert Panel on Population and Prevention Science; American Heart Association Council on Cardiovascular Disease in the Young; American Heart Association Council on Epidemiology and Prevention; American Heart Association Council on Nutrition, Physical Activity and Metabolism; American Heart Association Council on High Blood Pressure Research; American Heart Association Council on Cardiovascular Nursing; American Heart Association Council on the Kidney in Heart Disease; Interdisciplinary Working Group on Quality of Care and Outcomes Research. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation 2006;114:2710–2738
149. McGrindle BW, Urbina EM, Dennison BA, et al.; American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee; American Heart Association Council of Cardiovascular Disease in the Young; American Heart Association Council on Cardiovascular Nursing. Drug therapy of high-risk lipid abnormalities in children and adolescents: a scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in Youth Committee, Council of Cardiovascular Disease in the Young, with the Council on Cardiovascular Nursing. Circulation 2007;115:1948–1967
156. Chaffee BW, Watkins SL, Glantz SA. Electronic cigarette use and progression from experimentation to established smoking. Pediatrics 2018;141:e20173594
204. Inge TH, Laffel LM, Jenkins TM, et al.; Teen–Longitudinal Assessment of Bariatric Surgery (Teen-LABS) and Treatment Options of Type 2 Diabetes in Adolescents and Youth (TODAY) Consortium. Comparison of surgical and medical therapy for type 2 diabetes in severely obese adolescents. JAMA Pediatr 2018;172:452–460

221. Song SH. Complication characteristics between young-onset type 2 versus type 1 diabetes in a UK population. BMJ Open Diabetes Res Care 2015;3:e000044

229. Shelton RC. Depression, antidepressants, and weight gain in children. Obesity (Silver Spring) 2016;24:2450

234. Peters A, Laffel L; American Diabetes Association Transitions Working Group. Diabetes care for emerging adults: recommendations for transition from pediatric to adult diabetes care systems: a position statement of the American Diabetes Association, with representation by the American College of Osteopathic Family Physicians, the American Academy of Pediatrics, the American Association of Clinical Endocrinologists, the American Osteopathic Association, the Centers for Disease Control and Prevention, Children with Diabetes, The Endocrine Society, the International Society for Pediatric and Adolescent Diabetes, Juvenile Diabetes Research Foundation International, the National Diabetes Education Program, and the Pediatric Endocrine Society (formerly Lawson Wilkins Pediatric Endocrine Society). Diabetes Care 2011;34:2477–2485

239. Lyons SK, Becker DI, Helgeson VS. Transfer from pediatric to adult health care: effects on diabetes outcomes. Pediatr Diabetes 2014;15:10–17

244. White M, O’Connell MA, Cameron Fl. Clinic attendance and disengagement of young adults with type 1 diabetes after transition of care from paediatric to adult services (TrAceD): a randomised, open-label, controlled trial. Lancet Child Adolesc Health 2017;1:274–283

245. Schultz AT, Smaldone A. Components of interventions that improve transitions to adult care for adolescents with type 1 diabetes. J Adolesc Health 2017;60:133–146