Obesity Is a Risk Factor for Greater COVID-19 Severity

https://doi.org/10.2337/dc20-0682

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has attracted increasing worldwide attention (1). Obesity commonly aggravates the severity of respiratory diseases, but it is currently not known whether obese patients are also more likely to have greater COVID-19 severity of illness. We investigated the association between obesity and COVID-19 severity of illness among patients with laboratory-confirmed SARS-CoV-2 infection.

We enrolled adult patients with COVID-19 from three hospitals in China between 17 January 2020 and 11 February 2020. Seventy-five patients were diagnosed as obese (i.e., case subjects). We randomly matched each case subject with one control subject (nonobese) by sex (1:1) and age (± 5 years). The cohort thus comprised 150 patients with COVID-19. The study protocol was approved by local ethics committees of the three hospitals.

The mean age of patients was 48 years, and 62.7% were male. Twenty-nine (19.3%) had diabetes; obese patients were more likely to have diabetes than those without obesity (3). Hypertension and dyslipidemia were diagnosed based on established criteria. All patients denied a history of active cancer, chronic obstructive or restrictive pulmonary diseases, or other end-stage diseases. Patients received standard treatments according to the Chinese COVID-19 management guidance (7th edition) (2) and were all discharged alive from the hospital.

For statistical purposes, COVID-19 patients were categorized into two groups according to their disease severity as nonsevere (i.e., mild and moderate disease, combined) and severe (severe and critical, combined) (2). The association between presence of obesity or increasing BMI values (as exposure measures) and COVID-19 severity (as the outcome measure) was assessed by binary logistic regression analysis. Statistical analyses were two-sided, and significance was set at \(P < 0.05 \).

The mean age of patients was 48 years, and 62.7% were male. Twenty-nine patients (19.3%) had diabetes; obese patients were more likely to have diabetes than those without obesity (3). Hypertension and dyslipidemia were diagnosed based on established criteria. All patients denied a history of active cancer, chronic obstructive or restrictive pulmonary diseases, or other end-stage diseases. Patients received standard treatments according to the Chinese COVID-19 management guidance (7th edition) (2) and were all discharged alive from the hospital.

For statistical purposes, COVID-19 patients were categorized into two groups according to their disease severity as nonsevere (i.e., mild and moderate disease, combined) and severe (severe and critical, combined) (2). The association between presence of obesity or increasing BMI values (as exposure measures) and COVID-19 severity (as the outcome measure) was assessed by binary logistic regression analysis. Statistical analyses were two-sided, and significance was set at \(P < 0.05 \).

The mean age of patients was 48 years, and 62.7% were male. Twenty-nine patients (19.3%) had diabetes; obese patients were more likely to have diabetes than those without obesity (3). Hypertension and dyslipidemia were diagnosed based on established criteria. All patients denied a history of active cancer, chronic obstructive or restrictive pulmonary diseases, or other end-stage diseases. Patients received standard treatments according to the Chinese COVID-19 management guidance (7th edition) (2) and were all discharged alive from the hospital.

For statistical purposes, COVID-19 patients were categorized into two groups according to their disease severity as nonsevere (i.e., mild and moderate disease, combined) and severe (severe and critical, combined) (2). The association between presence of obesity or increasing BMI values (as exposure measures) and COVID-19 severity (as the outcome measure) was assessed by binary logistic regression analysis. Statistical analyses were two-sided, and significance was set at \(P < 0.05 \).

The mean age of patients was 48 years, and 62.7% were male. Twenty-nine patients (19.3%) had diabetes; obese patients were more likely to have diabetes than those without obesity (3). Hypertension and dyslipidemia were diagnosed based on established criteria. All patients denied a history of active cancer, chronic obstructive or restrictive pulmonary diseases, or other end-stage diseases. Patients received standard treatments according to the Chinese COVID-19 management guidance (7th edition) (2) and were all discharged alive from the hospital.

For statistical purposes, COVID-19 patients were categorized into two groups according to their disease severity as nonsevere (i.e., mild and moderate disease, combined) and severe (severe and critical, combined) (2). The association between presence of obesity or increasing BMI values (as exposure measures) and COVID-19 severity (as the outcome measure) was assessed by binary logistic regression analysis. Statistical analyses were two-sided, and significance was set at \(P < 0.05 \).
Obesity and COVID-19 Severity

Diabetes Care

(24.0% vs. 14.7%). Mean BMI for non-obese and obese patients was 21.8 ± 2.3 and 27.7 ± 2.7 kg/m², respectively. At their hospital admission, obese patients had higher levels of plasma C-reactive protein and lower lymphocyte counts, which are considered two early indicators of severe COVID-19 (2). Notably, obese patients also had a longer hospital stay (median 23 [interquartile range 17–30] vs. 18 [13–24] days; P = 0.037) and a greater proportion had severe COVID-19 (33.3% vs. 14.7%; P = 0.007 by χ² test) (Fig. 1A) compared with non-obese patients. As shown in Fig. 1B, there was a clear dose-effect relationship between increasing values of BMI and the proportion of patients with severe COVID-19.

In the logistic regression analyses, the presence of obesity was associated with an approximately threefold increased risk of having severe COVID-19 (unadjusted odds ratio [OR] 2.91, 95% CI 1.31–6.47). Each 1-unit increase in BMI was associated with a 12% increase in the risk of severe COVID-19 (unadjusted OR 1.12, 95% CI 1.01–1.23). Notably, the association between obesity (or increasing BMI values) and greater COVID-19 severity remained significant even after adjusting for age, sex, smoking status, hypertension, diabetes, and dyslipidemia (adjusted OR 3.00, 95% CI 1.22–7.38 for obesity, and adjusted OR 1.13, 95% CI 1.01–1.28 for BMI, respectively).

To date, the virologic and physiologic mechanisms underlying the strong relationship we observed between obesity and COVID-19 severity are poorly understood. It is plausible to hypothesize that severe COVID-19 in patients with obesity may be the consequence of underlying low-grade chronic inflammation, and suppression of innate and adaptive immune responses (4). In addition, the altered microenvironment associated with obesity may support a more diverse viral quasispecies and afford the emergence of potentially pathogenic variants capable of inducing greater disease severity (5). Finally, mechanical dysfunction due to severe obesity may increase the severity of lower respiratory tract infection and contribute to secondary infection (6).

Health care professionals caring for COVID-19 patients should be cognizant of the increased likelihood of severe COVID-19 in obese patients. In particular, the presence of obesity increases the risk of severe illness approximately threefold with a consequent longer hospital stay.

Acknowledgments. The authors thank Hong-Lei Ma (NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University) and Wen-Yue Liu (Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University) for data collection assistance. This work is a part of the PERSONS study.

Funding. This work was supported by a grant from the National Natural Science Foundation of China (81500665) as well as funding from the Ruian Science and Technology Bureau (2020023), High Level Creative Talents from Department of Public Health in Zhejiang Province, and Project of New Century 551 Talent Nurturing in Wenzhou. G.T. is supported in part by grants from the School of Medicine, University of Verona, Verona, Italy. C.D.B. is supported in part by the Southampton National Institute for Health Research Biomedical Research Centre (IS-BRC-20004), U.K.

Duality of Interest. No potential conflicts of interest relevant to this article were reported.

Author Contributions. F.G., K.I.Z., and M.-H.Z. contributed to study concept and design. X.-B.W., Q.-F.S., K.-H.P., T.-Y.W., and Y.-P.C. contributed to acquisition of data. F.G. and K.I.Z. contributed to analysis and interpretation of data. F.G. and K.I.Z. drafted the manuscript. G.T., C.D.B., and J.G. critically revised the manuscript for important intellectual content. M.-H.Z. supervised the study. All authors contributed to the manuscript for important intellectual content and approved the submission. M.-H.Z. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

References

